Подшипники качения основные типы материальных. Подшипники: определение, классификация, виды и назначение. Упорно-радиальные шариковые подшипники

Подшипники играют важную роль в современной механике. Примитивные аналоги этого механизма были известны ещё до нашей эры. Внешне такие механизмы смутно напоминали современные подшипники, но конструктивные сходства присутствовали. Об этом свидетельствуют находки с самых разных частей света. Современные подшипники активно применяются в различных сферах, существенно облегчая жизнь человека. Для чего нужны данные механизмы, и какие сферы и области применения подшипников Вы можете узнать в этой статье.

Типы и виды подшипников

Задача данного механизма - обеспечить равномерное движение вращательного характера, при этом снизить уровень трения между поверхностями. Существуют различные виды и типы подшипников. В зависимости от силы трения различают подшипники скольжения и качения. По названию, примерно можно понять, в чем их разница. Подшипники скольжения работают благодаря скользящим элементам, а качения - катящимся. Скользящими элементами в подшипниках могут выступать валы и планки, а катящимися элементами - цилиндры, ролики или различные шарики.

Каждый вид подшипника подразделяется на разные типы в зависимости от различных характеристик. Чтобы примерно иметь представление, о чем идет речь, приведем несколько примеров типов подшипников качения и скольжения. Подшипники качения подразделяются на роликовые и шариковые. Роликовые, в свою очередь, делятся на цилиндрические, игольчатые, конические и множество других. Подшипники скольжения можно поделить на радиальные, упорные и радиально - упорные.

Применение подшипников качения

Как уже было сказано, основными конструктивными элементами подшипников качения являются ролики и шарики. Конструкция таких подшипников позволяет поддерживать различные валы, оси механизмов и деталей, которые находится в движении.

Сферы и области применения подшипников чрезвычайно важны. Например, такие механизмы незаменимы в изготовлении различных транспортных средств и механизмов. Рассмотрим некоторые сферы и области применения подшипников качения.

  1. Производство оборудования. Подшипники качения применяют в оборудовании для разных видов промышленности, например, для пищевой промышленности. Такие механизмы позволяют повысить производительность и более рационально распределить ресурсы.
  2. Сталелитейная промышленность и цветная металлургия. Подшипники используют на различных этапах производства. Они имеют высокую механическую стойкость и поэтому не бояться ударных нагрузок.
  3. Автомобилестроение, авиация. Например, шариковые подшипники отлично себя проявили в случаях, когда нагрузки имеют постоянный характер и средние нагрузки. Роликовые подшипники применяются, если нагрузки значительно выше.
  4. Производство бытовой техники. Часто используют игольчатые подшипники, так как онихороши в использовании с объектами небольших размеров.

Применение подшипников скольжения

Подшипники скольжения различаются от подшипников качения, но сферы их применения схожи. Такие подшипники активно применяются для изготовления различного оборудования, железнодорожной техники, в автомобилестроении, авиационной промышленности. Особенно популярны радиальные подшипники скольжения.

К сферам и областям применения подшипников скольжения также можно отнести технику для сельского хозяйства и строительную технику. Такие подшипники активно применяют в случаях, где существует вероятность высоких ударных нагрузок и неблагоприятных природных условий.

Безусловно, на современном этапе развития любой промышленности невозможно обойтись без применения подшипников. Эта сфера активно развивается во многих странах мира, в том числе и в Украине.

Подшипник, согласно ГОСТ 24955-81 - опора, определяющая положение движущихся частей механизма относительно других частей.

В зависимости от характера взаимодействия подвижных и неподвижных элементов подшипника различают и качения.

Рассмотрим подробнее устройство, разновидности, особенности подшипников качения.

Классификация подшипников качения

В зависимости от формы тел качения различают подшипники:

  • Шариковые
  • Роликовые
    • с цилиндрическими роликами
    • с коническими роликами
    • с бочкообразными роликами
    • с витыми роликами
    • с игольчатыми роликами

По числу рядов различают подшипники:

  • однорядные
  • двурядные
  • четырехрядные

По возможности самоустановки:

  • несамоустанавливающиеся
  • сферические самоустанавливающиеся

По направлению воспринимаемой нагрузки:

  • радиальные
  • упорные
  • радиально-упорные

Устройство подшипников качения


В общем случае подшипник качения состоит из наружного 1 и внутреннего 1 кольца, на которых могут быть выполнены беговые дорожки (канавки). Между кольцами расположены тела качения 3 (шарики, ролики). Для базирования тел качения внутри подшипника используется сепаратор. Внутренне кольцо устанавливается на валу, наружное - в корпусе (опоре).

Передача усилий от вала на опоры осуществляется через тела качения.

Осевые и радиальные нагрузки

В зависимости от типа, подшипники способны воспринимать радиальные и осевые нагрузки.

Радиальной называют нагрузку, направленную в радиальном направлении, то есть от центра к наружному диаметру.

Осевой называют нагрузку, действующую в направлении оси вала.


Основные типы подшипников

Типы и конструктивные исполнения подшипников стандартизованы в ГОСТ 3395-89.

Шарикоподшипники

Телом качения в подшипниках данного типа являются шарики, их контакт в идеальном случае - точечный. Шариковые подшипники более быстроходны, чем роликовые.

Однорядные радиальные шариковые подшипники

Подшипники этого типа предназначены для восприятия нагрузки в радиальном направлении.

За счет размещения шариков в желобе шариковые подшипники способны воспринимать кратковременную осевую нагрузку.

Благодаря точечному контакту между обоймой е телами качения подшипник обладает наименьшим трением и подходит для высоких частот вращения.

Двухрядные радиальные шариковые подшипники

Обладают повышенной грузоподъемностью по сравнению с однорядными подшипниками, но требуют более точной установки.

Двухрядные шариковые сферические подшипники

Самоустанавливающиеся подшипники, применяют в конструкциях где возможны смещения осей подшипников друг относительно друга или в случае отсутсвия возможности обеспечения соосности подшипников.

Обладают меньшей грузоподъемностью по сравнению с несамоустанавливающимися шариковыми подшипниками.

Шариковые радиально-упорные подшипники

Радиально-упорные подшипники предназначены для восприятия как осевых, так и радиальных усилий.

Одиночную установку шарикового радиально-упорного подшипника применяют редко, только в том случае если осевая нагрузка всегда действует только в одном направлении. Обычно шариковые радиально-упорные подшипники устанавливают парно, с затяжкой внутренних или внешних обойм.

Однорядные шариковые упорные подшипники

Предназначены для восприятия осевой нагрузки, действующей в одном направлении. Радиальную нагрузку воспринимать не могут.

Двухрядные шариковые упорные подшипники

Способны воспринимать осевую нагрузку, действующую в обоих направлениях. Частота вращения ограничена величиной центробежных сил, под действием которых шарики могут смещаться за пределы беговых канавок.

Упорно-радиальные шариковые подшипники

Способны воспринимать, как осевые, так и радиальные нагрузки.

Роликоподшипники

Телом качения в подшипниках этого типа являются ролики, поверхности ролика и обоймы контактируют по линии (если считать их абсолютно твердыми). Роликовые подшипники обладают большей грузоподъемностью, чем шариковые.

Радиальные роликовые подшипники

Роликовые подшипники данного типа способны воспринимать высокую нагрузку в радиальном направлении. Их несущая способность в 1,5 - 2 раза выше, чем у шариковых подшипников тех же размеров.

Подшипники с длинными роликами отличаются меньшими габаритами в радиальном направлении и большей несущей способностью.

Подшипники с витыми роликами обладают меньшей несущей способностью, но повышенной упругостью.

Игольчатые подшипники

Особый вид роликовых подшипников с длинными роликами малого диаметра. Игольчатые подшипники предназначения для восприятия очень высоких радиальных нагрузок при небольших частотах вращения.

Двурядные подшипники с бочкообразными роликами

Самоустанавливающиеся роликовые подшипники. Отличаются от шариковых сферических повышенной грузоподъемностью как в радиальном так и в осевом направлении.

Конические радиально упорные подшипники

Конические подшипники используют при высоких радиальных и осевых нагрузках. Угол конуса наружной беговой дорожки составляет 20-30 градусов. Осевое усилие вызывает высокие нагрузки на ролики.

Частота вращения конических подшипников ограничена, они требуют точно установки, для чего могут использоваться регулировочные шайбы, прокладки.

Увеличение угла конуса наружной беговой дорожки позволяет увеличить допускаемую осевую нагрузку.

Упорные подшипники с цилиндрическими роликами

Состоят из колец, роликов и центрирующего сепаратора. Упорные цилиндрические подшипники применяют при низких частотах вращения и высоких нагрузках.

Упорные с коническими роликами

Телом качения являются ролики, вершины которых сходятся на оси подшипника.

Сфероконические упорные

Самоустанавливающиеся подшипники, предназначенные для работы с большими радиальными и осевыми нагрузками. Профили тел качения - бочкообразные.

Обозначение подшипников качения

Рассмотрим обозначения стандартизированных подшипников.

Обозначение подшипников по ГОСТ

Правила обозначения стандартных подшипников качения указаны в ГОСТ 3189-89. Подшипники шариковые и роликовые. Система условных обозначений .

Обозначение состоит из набора цифр, каждая из которых указывает на ту или иную техническую характеристику.

Для обозначений подшипников с внутренним диаметром до 10 мм используется следующая схема:


Подшипники с внутренним диаметром более 10 мм обозначают следующим образом:


Расшифровку обозначения удобно проводить справа налево.

Первые две цифры справа обозначают внутренний диаметр подшипник. Для подшипников с внутренним диаметром от 20 до 495 мм указывается цифра диаметра, разделенная на 5. Для подшипников с диаметром меньше 10 указывается одна цифра , соответствующая внутреннему диаметру.

Для подшипников с внутренним диаметром от 10 до 20 указываются следующие цифры.

Диаметр отверстия подшипника, мм Обозначение
10 00
12 01
15 02
17 03

Третья цифра для подшипников с диаметром больше 10 указывает на серию диаметров. При внутреннем диаметре меньше 10 третей цифрой указывается 0.

Четвертая цифра обозначает тип подшипника.

  • 0 радиальный шариковый однорядный
  • 1 радиальный шариковый двурядный сферический
  • 2 радиальный с короткими цилиндрическими роликами
  • 3 радиальный роликовый двурядный сферический
  • 4 роликовый с длинными или игольчатыми роликами
  • 5 роликовый свитыми роликами
  • 6 радиально-упорный шариковый
  • 7 роликовый конический
  • 8 упорный шариковый
  • 9 упорный роликовый

Пятая и шестая цифра указывает на конструктивные особенности подшипника.

Конструктивные исполнения подшипников указаны в ГОСТ 3395 Подшипники качения. Типы и конструктивные исполнения Седьмая цифра справа обозначают серию по ширине:

  • узкие
  • нормальные
  • широкие
  • особо широкие

Нули в левой части обозначения могут опускаться (не указываться).

Примеры обозначения подшипников по ГОСТ

Рассмотрим пример обозначения радиального шарикоподшипника с внутренним диаметром 30 мм, сверхлегкой серии диаметров 9, нормальной серии ширин 1.

  • Первые две цифры справа 30/5=06
  • Третья цифра - серия диаметров - 9
  • Четвертая цифра справа для шарикового радиального однорядного подшипника - 0
  • Пятая и шестаяя цифра
  • Седьмая цифра справа - серия ширин - 1

Получается, что обозначение данного подшипника - 1000906.

Расшифруем обозначение подшипника 2007108 , расшифровку будем проводить справа налево.

  • 08 - цифра указывает на внутренний диаметр подшипника, поделенный на 5, значит диаметр кольца подшипника - 08*5=40мм
  • 1 - серия диаметров 1
  • 7 - роликовый конический
  • 00 - без конструктивных особенностей
  • 2 - серия ширин 2

Получается, что обозначение 2007108 имеет роликовый конический подшипник серии диаметров 1, серии ширин 2.

Рассмотрим обозначение подшипника с диаметром меньше 10 - 1000088.

  • 8 - диаметр подшипника меньше 10 мм, цифра обозначает внутренний диаметр подшипника 8 мм.
  • 8 - серия диаметров 8
  • 0 - третья цифра 0, при обозначении подшипников с внутренним диаметром меньше 10
  • 00 - без конструктивных особенностей
  • 1 - серия ширин 1

Подшипник 107, для расшифровки удобнее записать 0 00 0 107.

  • 07 - внутренний диаметр 35
  • 1 - серия диаметров 1
  • 0 - шариковый радиальный однорядный
  • 00 - без конструктивных особенностей
  • 0 - серия ширин 0

Обозначение подшипников по ISO/DIN

Обозначение импортных подшипников основано на тех же принципах, что и обознчаение по ГОСТ.


Если расшифровывать обозначение справа налево, первая цифра (или первые две цифры) указывает на внутренний диаметр. Для подшипников с внутренним диаметром от 20 до 495 мм указывается цифра диаметра, разделенная на 5.

Для подшипников с диаметром меньше 10 указывается одна цифра, соответствующая внутреннему диаметру. Соответствие цифр диаметрам подшипников от 10 до 20 указано в таблице.

Вторая справа цифра указывает на серию ширин, третья - серия диаметров, четвертая - тип подшипника:

  • 0 - шариковые радиально-упорные
  • 1 - шариковые сферические
  • 2 - роликовые сферические
  • 3 - роликовые конические
  • 4 - шариковые радиальные двурядные
  • 5 - шариковые упорные
  • 6 - шариковые радиальные однорядные
  • 7 - шариковые радиально-упорные
  • 8 - роликовые цилиндрические упорные
  • C - роликовые тороидальные
  • N - роликовые цилиндрические
  • QJ - шариковые с четырехточечным контактом
  • T - роликовые конические по ISO 35

После обозначения может указываться суффикс, свидетельствующий о наличии конструктивных особенностей, например:

  • Z - наличие защитного кольца с одной стороны
  • ZZ - Наличие защитного кольца с двух сторон

Перед базовым обозначением может находится префикс, указывающий на тип и профиль подшипника, например:

  • H - высокоскоростной
  • HS - сверхскоростной

Достоинства подшипников качения

  • Низкое трение, и как следствие меньший нагрев, и более мягкие требования к смазке, по сравнению с подшипниками скольжения
  • Малые габариты в осевом направлении
  • Возможность работы в широком диапазоне температур
  • Стандартизированы, взаимозаменяемы

Недостатки подшипников качения

  • Требуются минимальные
  • Большие габариты в радиальном направлении
  • Шум при работе
  • Долговечность резко снижается при увеличении нагрузки

Подшипники позволяют достичь ровного движения с низким трением между двумя поверхностями. Движение может быть как вращательным, так и линейным. Линейные подшипники рассматриваются в разделе линейных направляющих.

Основные типы подшипников, используемых при вращательных движениях – подшипники скольжения и подшипники качения. Устройство подшипника каждого типа отличаю свойственные ему особенности, которые определяют применимость его в разных случаях.

Самый древний тип подшипников – это подшипники скольжения, которые воспринимают нагрузку в процессе скольжения. В подшипниках качения нагрузка действует на множество элементов качения, заключенных в подшипнике. В обоих случаях для долгого срока службы подшипника необходимо соответствующее смазывание. Обычно подшипники скольжения стоят дешевле, чем подшипники качения таких же размеров, но подшипники качения выдерживают большие нагрузки и могут работать при более высоких скоростях.

Подшипники, воспринимающие нагрузку, направление которой перпендикулярно оси называются радиальные. Подшипники, воспринимающие нагрузку, направленную параллельно оси называются упорными.

Устройство подшипника скольжения не сложно – обычно это посаженный наглухо цилиндр, чаще стационарный, который заключает в себе и поддерживает движущийся элемент, который обычно называют валом. Подшипники скольжения также называют втулками скольжения.

В подшипниках качения нагрузку принимают на себя элементы качения, это могут быть шарики или ролики. Доступны роликовые подшипники для работы с радиальной и осевой нагрузками или их комбинации. Эти подшипники состоят из одного или двух колец шариков или роликов, расположенных между внутренним и наружным кольцами, таким образом, мы получим однорядные или двухрядные подшипники. Дорожки качения на внутреннем и наружном кольце направляют тела качения. Сепаратор используется, чтобы элементы качения держались на равных расстояниях друг от друга. Между телами качения и дорожками качения может быть зазор, чтобы компенсировать расширение материала при нагревании.

Классификация подшипников по типам на верхнем уровне базируется на виде трения – качения или скольжения. Подшипники качения делятся по типу тел качения на шариковые и роликовые. Шариковые подшипники бывают радиальными, упорными и радиально-упорными, в зависимости от нагрузки, для которой они предназначены. Роликовые подшипники классифицируются по форме роликов – цилиндрические, конические и т.д.

Подшипники качения

Обычно шариковые подшипники стоят дешевле, чем роликовые подшипники сходных размеров и обычно они используются для малых и незначительных нагрузок. У этих подшипников маленькая площадь контакта между дорожками и телами качения. Такая конструкция позволяет им работать на высоких скоростях с минимальным разрушением от усталости и меньшим нагревом, чем роликовые подшипники.

Радиальные шариковые подшипники

Два основных типа радиальных шариковых подшипников – это подшипники с канавкой для ввода шариков и подшипники без канавки.

Кроме того выпускаются специальные подшипники для специфических применений, например двухрядные подшипники, которые могут выдерживать более высокие радиальные нагрузки.

Другой тип – это самоустанавливающийся роликовый подшипник, позволяющий компенсировать несоосность между валом и корпусом.

Радиально-упорные подшипники

Эти подшипники созданы, чтобы выдерживать комбинированную нагрузку. Отношение радиальной и осевой нагрузки зависит от угла контакта между дорожками качения и осью подшипника.

Упорные подшипники

Упорные подшипники главным образом принимают упорную нагрузку и обеспечивают осевое положение вала. Этот тип подшипников отличается от других тем, что расстояние между кольцами перпендикулярно оси вращения. Упорные подшипники обычно состоят из двух дорожек качения, плоских или с углублением для тел качения, которые разделяет сепаратор с телами качения.

Роликовые подшипники

В роликовых подшипниках поверхность соприкосновения тел качения с внутренним и наружным кольцом больше, они в общем случае выдерживают большие нагрузки, чем сравнимые по размеру шариковые подшипники. Роликовые подшипники выдерживают нагрузки от средних до тяжелых и способны выдерживать ударные нагрузки. Они меньше подвержены деформации, чем шариковые подшипники, потому что давление на ролики при соприкосновении при равной нагрузке меньше из-за увеличенной зоны контакта.

Роликовые подшипники делятся на цилиндрические, игольчатые, сферические и конические.

Отдельно выделяют подшипниковые узлы, когда подшипник поставляется вмонтированным в корпус.

Более подробную информацию о каждом типе подшипников Вы можете найти в соответствующих разделах сайта.

Подшипники качения, как и подшипники скольжения, предназначены для поддержания вращающихся осей и валов.

Электродвигатели , подъемно-транспортные и сельскохозяйственные машины, летательные аппараты, локомотивы, вагоны, металлорежущие станки, зубчатые редукторы и многие другие механизмы и машины в на-стоящее время немыслимы без подшипников качения.

Подшипники качения состоят из двух колец — внутреннего 1 и наруж-ного 3, тел качения 2 (шариков или роликов) и сепаратора 4 (рис. 16, а). В зависимости от: формы тел качения различают подшипники шариковые (рис. 16, д, б, ж, и) и роликовые (рис. 16, в, г, е, з, к). Разновидностью роликовых подшипников являются игольчатые подшипники (рис. 16, д).

Основными элементами подшипников качения являются тела каче-ния — шарики или ролики, установленные между кольцами и удерживае-мые сепаратором на определенном расстоянии друг от друга.

Материалы. Материалы подшипников качения назначаются с учётом высоких требований к твёрдости и износостойкости колец и тел качения. Здесь используются шарикоподшипниковые высокоуглеродистые хромистые стали ШХ15 и ШХ15СГ, а также цементируемые легированные стали 18ХГТ и 20Х2Н4А. Твёрдость колец и роликов обычно HRC 60...65, а у шариков немного больше - HRC 62... 66, поскольку площадка контактного давления у шарика меньше. Сепараторы изготавливают из мягких углеродистых сталей либо из антифрикционных бронз для высокоскоростных подшипников. Широко внедряются сепараторы из дюралюминия, металлокерамики, текстолита, пластмасс.

Для обеспечения нормальной и долговечной работы подшипников ка-чения к качеству их изготовления и термической обработке тел качения и колец предъявляют высокие требования.

Подшипники качения — это опоры вращающихся или качающихся де-талей. Подшипники качения в отличие от подшипников скольжения стан-дартизованы. Подшипники качения различных конструкций (диапазон на-ружных диаметров 1,0-2600 мм, масса 0,5-3,5 т, например, микроподшип-ники с шариками диаметром 0,35 мм и подшипники с шариками диаметром 203 мм) изготовляют на специализированных подшипниковых заводах.

Выпускаемые в СНГ подшипники качения классифицируют по способности воспринимать нагрузку — радиальные, радиально-упорные, упор-но-радиальные и упорные.

Рис. 16. Подшипники качения: а, б, в, г, д, е — радиальные подшипники; ж, з — радиально-упорные подшипники; и, к — упорные подшипники; 1 — внутреннее кольцо; 2 — тело ка-чения; 3 — наружное кольцо; 4— сепаратор

Радиальные подшипники (см. рис. 16, а-е) воспринимают (в основ-ном) радиальную нагрузку, т. е. нагрузку, направленную перпендикулярно к геометрической оси вала.


Упорные подшипники (см. рис. 16, и, к) воспринимают только осе-вую нагрузку.

Радиально-упорные (см. рис. 16, ж, з) и упорно-радиальные подшип-ники могут одновременно воспринимать как радиальную, так и осевую на-грузку. При этом упорно-радиальные подшипники предназначены для пре-обладающей осевой нагрузки.

В зависимости от соотношения размеров наружного и внутреннего диа-метров, а также ширины подшипники делят на серии: сверхлегкую, особо легкую, легкую, среднюю, тяжелую, легкую широкую, среднюю широкую.

В зависимости от серии при одном и том же внутреннем диаметре кольца подшипника наружный диаметр кольца и его ширина изменяются.

По классам точности подшипники различают следующим образом:

"0" - нормального класса;

"6" - повышенной точности;

"5" - высокой точности;

"4" - особовысокой точности;

"2" - сверхвысокой точности.

При выборе класса точности подшипника необходимо помнить о том, что "чем точнее, тем дороже".

По форме тел качения подшипники делят на шариковые (см. рис. 16, а, б, ж, и), с цилиндрическими роликами (см. рис. 16, в), с кониче-скими роликами (см. рис. 16, з, к), игольчатые (см. рис. 16, д), с витыми роликами (см. рис. 16, е), с бочкообразными роликами (сферическими) (см. рис. 16, г). Тела качения игольчатых подшипников тонкие ролики — иглы диаметром 1,6-5 мм. Длина игл в 5-10 раз больше их диаметра. Се-параторы в игольчатых подшипниках отсутствуют.

По числу рядов тел качения различают однорядные (см. рис. 16, а, в, д-к) и двухрядные (см. рис. 16, б, г) подшипники качения.

По конструктивным и эксплуатационным признакам подшипники делят на самоустанавливающиеся (см. рис. 16, б, г) и несамоустанавливающиеся (см. рис. 16, а, в, д-к).

Под типом подшипника понимают его конструктивную разновидность, определяемую по признакам классификации.

Каждый подшипник качения имеет условное клеймо, обозначающее тип, размер, класс точности, завод-изготовитель.

На неразъемные подшипники клеймо наносят на одно из колец, на разборные — на оба кольца, например, на радиальный подшипник с ко-роткими цилиндрическими роликами (см. рис. 16, в), где наружное коль-цо без бортов и свободно снимается, а внутреннее кольцо с бортами со-ставляет комплект с сепаратором и роликами.

На один и тот же диаметр шейки вала предусматривается несколько серий подшипников, которые отличаются размерами колец и тел качения и соответственно величиной воспринимаемых нагрузок.

В пределах каждой серии подшипники равных типов взаимозаменяемы в мировом масштабе. В стандартах указываются: номер подшипника, размеры, вес, предельное число оборотов, статическая нагрузка и коэффициент работоспособности.

Первая и вторая цифры справа условно обозначают его номинальный внутренний диаметр d (диаметр вала). Для определения истинного размера d (в миллиметрах) необходимо указанные две цифры умножить на пять. Например, подшипник...04 имеет внутренний диаметр 04 . 5 = 20 мм. Это правило распространяется на подшипники с цифрами...04 и выше, до...99, т. е. для J = 20h - 495 mm. Подшипники с цифрами... 00 имеют d- 10 мм; ...01 d = 12 мм; ...02 d = 15 мм; ...03 d = 17 мм.

Третья цифра справа обозначает серию подшипника, определяя его на-ружный диаметр: 1 — особо легкая, 2 — легкая; 3 — средняя, 4 — тяжелая; 5 — легкая широкая, 6 — средняя широкая.

Четвертая цифра справа обозначает тип подшипника. Если эта цифра 0, то это означает, что подшипник радиальный шариковый одно-рядный; шариковый однорядный (если левее 0 нет цифр, то 0 не указыва-ют); 1 — радиальный шариковый двухрядный сферический; 2 — радиаль-ный с короткими цилиндрическими роликами; 3 — радиальный роликовый двухрядный сферический; 4 — игольчатый или роликовый с длинными ци-линдрическими роликами; 5 — роликовый с витыми роликами; 6 — радиально-упорный шариковый; 7 — роликовый конический (радиально-упорный); 8 — упорный шариковый; 9 — упорный роликовый.

Так, например, подшипник 7208 является роликовым коническим.

Пятая и шестая цифры справа характеризуют конструктивные особен-ности подшипника (неразборный, с защитной шайбой, с закрепительной втулкой и т. п.).

Например :

50312 — радиальный однорядный шарикоподшипник средней серии со стопорной канавкой на наружном кольце;

150312 — тот же подшипник с защитной шайбой;

36312 — радиально-упорный шариковый однорядный подшипник сред-ней серии, неразборный.

Седьмая цифра справа характеризует серию подшипника по ширине.

ГОСТом установлены следующие классы точности подшипников каче-ния: 0 — нормальный класс (как правило, 0 в обозначении не указывают); 6 — повышенный; 5 — высокий, 4 — особо высокий, 2 — сверхвысокий. Цифру, обозначающую класс точности, ставят слева от условного обозна-чения подшипника и отделяют от него знаком тире; например, 206 означа-ет шариковый радиальный подшипник легкой серии с номинальным диа-метром 30 мм, класса точности 0.

Кроме цифр основного обозначения слева и справа от него могут дополнительные буквенные или цифровые знаки, характеризующие специальные условия изготовления данного подшипника.

Так, класс точности маркируют цифрой слева через тире от основного обозначения. В порядке повышения точности классы точности обозначают: 0, 6, 5, 4, 2. Класс точности, обозначаемой цифрой 0 и соответствующей нормальной точности, не проставляют. В общим машиностроение применяют подшипники классов 0 и 6. в изделиях высокой точности или работающей высокой частотой вращения (шпиндельные узлы скоростных станков, высокооборотный электродвигатели и др.) применяют подшипники класса 5 и 4. подшипники класса точности 2 используют в гироскопических приборах.

Так, например, подшипник 7208 — класса точности 0.

Помимо приведенных выше имеются и дополнительные (более высокие и более низкие) классы точности.

В зависимости от наличия дополнительных требований к уровню вибраций, отклонениям формы и расположения поверхностей качения, моменту трения и др. установлены три категории подшипников: А — повышенные регламентированные нормы; В — регламентированные нормы; С — без дополнительных требований.

Возможные знаки справа от основного обозначения: Е — сепаратор выполнен из пластических материалов; Р — детали подшипника из теп-лостойких сталей; С — подшипник закрытого типа при заполнении сма-зочным материалом и др.

Примеры обозначений подшипников:

311 — подшипник шариковый радиальный однорядный, средней серии диаметров 3, серии ширин 0, с внутренним диаметром d = 55 мм, основной конструкции (см. рис. 14.5, а), класса точности 0;

6-36209 — подшипник шариковый радиально-упорный однорядный, легкой серии диаметров 2, серии ширин 0, с внутренним диаметром d = 45 мм, с углом контакта а = 12°, класса точности 6;

4-12210 — подшипник роликовый радиальный с короткими цилиндрическими роликами, легкой серии диаметров 2, серии ширин 0, с внутренним диаметром d = 50 мм, с одним бортом на наружном кольце (см. рис. 14.9, б), класса точности 4;

4-3003124Р — подшипник роликовый радиальный сферический двухрядный особолегкой серии диаметров 1, серии ширин 3, с внутренним диаметром d = 120 мм, основной конструкции (см. рис. 14.8), класса точности 4, детали подшипника изготовлены из теплостойких сталей.

Характеристики подшипников качения.

Наибольшее распространение получили шариковые радиальные одноряд-ные подшипники (см. рис. 16, а). Эти подшипники допускают сравнительно большую угловую скорость, особенно с сепараторами из цветных металлов или из пластмасс, допускают небольшие перекосы вала (от 15" до 30") и могут воспринимать незначительные осевые нагрузки. Допустимая осевая нагрузка для радиальных несамоустанавливающихся подшипников не должна превы-шать 70% от неиспользованной радиальной грузоподъемности подшипника.

Роликовые радиальные подшипники с короткими роликами (см. рис. 16, в) по сравнению с аналогичными по габаритным размерам шари-коподшипниками обладают увеличенной грузоподъемностью, хорошо вы-держивают ударные нагрузки. Однако они совершенно не воспринимают осевых нагрузок и не допускают перекоса вала (ролики начинают работать кромками, и подшипники быстро выходят из строя).

Роликовые радиальные подшипники с витыми роликами (см. рис. 16, е) применяют при радиальных нагрузках ударного действия; удары смягчают-ся податливостью витых роликов. Эти подшипники менее требовательны к точности сборки и к защите от загрязнений, имеют незначительные ради-альные габаритные размеры.

Игольчатые подшипники (см. рис. 16, д) отличаются малыми радиаль-ными габаритными размерами, находят применение в тихоходных (до 5 м/с) и тяжелонагруженных узлах, так как выдерживают большие ради-альные нагрузки. В настоящее время их широко используют для замены подшипников скольжения. Эти подшипники воспринимают только радиальные нагрузки и не допускают перекоса валов. Для максимального уменьшения размеров применяют подшипники в виде комплекта игл, не-посредственно опирающихся на вал, с одним наружным кольцом.

Самоустанавливающиеся радиальные двухрядные сферические шариковые (рис. 16, б) и роликовые (см. рис. 16, г) подшипники применяют в тех слу-чаях, когда перекос колец подшипников может составлять до 2—3°. Эти под-шипники допускают незначительную осевую нагрузку (порядка 20% от не-использованной радиальной) и осевую фиксацию вала. Подшипники имеют высокие эксплуатационные показатели, но они дороже, чем однорядные.

Конические роликоподшипники (см. рис. 16, з) находят примене-ние в узлах, где действуют одновременно радиальные и односторонние осевые нагрузки. Эти подшипники могут воспринимать также и ударные нагрузки. Радиальная грузоподъемность их в среднем почти в 2 раза выше, чем у радиальных однорядных шарикоподшипников. Их рекомендуется ус-танавливать при средних и низких угловых скоростях вала (до 15 м/с).

Аналогичное использование имеют радиально-упорные шарикоподшипники (см. рис. 16, ж), применяемые при средних и высоких угловых скоростях. Радиальная грузоподъемность у этих подшипников на 30-40 % больше, чем у радиальных однорядных. Их выполняют разъемными со съемным на-ружным кольцом и неразъемными.

Шариковые и роликовые упорные подшипники (см. рис. 16, и. к) предназначены для восприятия односторонних осевых нагрузок. Применя-ются при сравнительно невысоких угловых скоростях, главным образом на вертикальных валах. Упорные подшипники радиальную нагрузку не вос-принимают. При необходимости установки упорных подшипников в узлах, где действуют не только осевые, но и радиальные нагрузки, следует допол-нительно устанавливать радиальные подшипники.

В некоторых конструкциях, где приходится бороться за уменьшение радиальных габаритов, применяются т.н. "бескольцевые" подшипники, когда тела качения установлены непосредственно между валом и корпусом. Однако нетрудно догадаться, что такие конструкции требуют сложной, индивидуальной, а, следовательно, и дорогой сборки-разборки.

Достоинства подшипников качения:

- низкое трение, низкий нагрев;

Экономия смазки;

Высокий уровень стандартизации;

Экономия дорогих антифрикционных материалов.

Недостатки подшипников качения:

- высокие контактные напряжения, и поэтому ограниченный срок службы;

- высокие габариты (особенно радиальные) и вес;

Высокие требования к оптимизации выбора типоразмера;

Большая чувствительность к ударным нагрузкам вследствие большой жесткости конструкции;

Повышенный шум;

Слабая виброзащита, более того, подшипники сами являются генераторами вибрации за счёт даже очень малой неизбежной разноразмерности тел качения.

ПРИКЛАДНАЯ МЕХАНИКА И

ОСНОВЫ КОНСТРУИРОВАНИЯ

Лекция 10

ЧЕВЯЧНЫЕ ПЕРЕДАЧИ

А.М. СИНОТИН

Кафедра технологии и автоматизации производства

Подшипники качения Общие сведения

Подшипник качения представляет собой готовый узел, основным элементом которого является тела качения – шарики или ролики, установленные между кольцами и удерживаемые на определенном расстоянии друг от друга обоймой, называемой сепаратором (рис. 1).

1- наружное кольцо; 2- внутреннее кольцо; 3 - шарик; 4 - сепаратор.

Рисунок 1 – Шариковый однорядный радиальный подшипник

В процессе работы тела качения перекатываются по беговым дорожкам колец, одно из которых в большинстве случаев неподвижно. Распределение нагрузки между несущими телами качения неравномерно (рис. 2) и зависит от величины радиального зазора в подшипнике и от точности геометрической формы его деталей.

Рисунок 2 – Схема распределения нагрузки между телами качения в подшипнике

Рисунок 3 – Блок зубчатых колец на игольчатых подшипниках без колец

В отдельных случаях для уменьшения радиальных размеров подшипника кольца отсутствуют (рис.3) и тела качения перекатываются непосредственно по цапфе и корпусу. Подшипники качения стандартизованы и изготовляются в массовом производстве специализированными заводами.

Достоинства:

    сравнительно малая себестоимость вследствие массового производства подшипников;

    малые потери на трение и незначительный нагрев. Потери на трение при пуске и установившемся режиме работы практически одинаковы;

    высокая степень взаимозаменяемости, что обеспечивает монтаж и ремонт машин, приборов;

    более высокая точность вращения;

    малый износ;

    менее чувствительны к изменению температуры окружающей среды;

    хорошо работают при отсутствии смазки и обладают высокой стабильностью момента трения;

    малый расход смазки;

    не требуют особого внимания и ухода;

Недостатки:

    увеличение веса и габаритных размеров конструкции;

    необходимость дополнительных деталей для крепления их в корпусе и на валу;

    специфический шум от перекатывания шариков (особенно при больших скоростях);

    высокая чувствительность к ударным и вибрационным нагрузкам вследствие большой жесткости конструкции подшипника;

    малонадежны в высокоскоростных приводах из-за чрезмерного нагрева и опасности разрушения сепаратора от действия центробежных сил;

    сравнительно большие радиальные размеры;

Применение

Во всех отраслях машиностроения широко применяются опоры с применением подшипников качения. Полиграфическое оборудование не является исключением. Применение подшипников качения позволило заменить трение скольжения трением качения. При этом коэффициент трения снижается до 0,0015 – 0,006 * .

Основные типы подшипников качения

На рис. 4 изображены основные типы подшипников качения. По форме тел качения они разделяются на шариковые и роликовые (цилиндрические, конические, витые, игольчатые и т.д.), по направлению воспринимаемой нагрузки – на радиальные, упорные и радиально-упорные.

1– шариковый радиальный; 2 – шариковый сферический (самоустанавливающийся); 3 - шариковый радиально-упорный; 4- роликовый радиальный; 5 - роликовый радиально-упорный (конический); 6 - роликовый сферический (самоустанавливающийся); 7 - игольчатый радиальный; 8 - шариковый упорный (простой и самоустанавливающийся)

Рисунок 4 – Основные типы подшипников качения

Радиальные шариковые подшипники – наиболее простые и дешевые. Они допускают небольшие перекосы вала (до ¼ и ½°) и могут воспринимать осевые нагрузки в пределах 70% от неиспользованной радиальной. Эти подшипники наиболее распространены в опорах полиграфического оборудования.

Радиальные роликовые подшипники благодаря увеличенной контактной поверхности допускают значительно большие нагрузки, чем шариковые (в среднем на 70-90%). Однако они совершенно не воспринимают осевые нагрузки и не допускают перекоса вала. При перекосе вала ролики начинают работать кромками и подшипник быстро разрушается. Аналогичное сравнение можно провести и между радиально-упорными шариковыми и роликовыми подшипниками.

Самоустанавливающиеся шариковые и роликовые подшипники применяются в тех случаях, когда ожидается значительный перекос вала (до 2-3°). Они имеют сферическую поверхность наружного кольца, а роликам придается бочкообразная форма. Эти подшипники допускают небольшие осевые нагрузки – до 20% от неиспользованной радиальной.

Применение игольчатых подшипников позволяет уменьшить габариты (по диаметру) при значительных перегрузках.

Большое влияние на работоспособность подшипника оказывает качество сепаратора. Сепараторы разделяют и направляют тела качения. В подшипниках без сепаратора тела качения набегают друг на друга. При этом, кроме трения качения, возникают трение скольжения, увеличиваются потери и износ подшипника. Установка сепаратора значительно уменьшает потери на трение, т.к. сепаратор является свободно плавающим и вращающимся элементом.

Загрузка...
Top