Вал тихоходный. Расчетная схема валов редуктора (определение реакции и построение эпюр) Определение опорных реакций тихоходного вала


Uоб =40,3 2. Кинематический расчет привода 2.1 Общее передаточное число привода 2.2 Частоты вращения Что соответствует задачи 3. Силовой расчет 3.1 Находим рассчитанную мощность привода, как можно наибольшую размерную величину а) б) 3.2 Определяем мощность на валах 3.3 Определяем моменты на валах 3.4 Данные сводим в таблицу № вала ni мин-1 ...

расчете учитываем к.п.д. привода, частоту вращения, мощность двигателя, крутящий момент на тихоходном валу. В зависимости крутящего момента и диаметра вала из справочника выбираем подходящую муфту. Для дальнейшей разработки и изготовления редуктора необходимо наглядное представление о нем. Для этого чертятся чертежи, по которым можно точно определить месторасположения каждой детали. По...

М1 и М2; =0,99 - коэффициент полезного действия подшипников. Частота вращения на валах определяется по формулам: Где - частоты вращения на I, II, III валах привода, об/мин =1430 об/мин - частоты вращения вала электродвигателя; - передаточное отношение редуктора. Момент на валах определяется по формулам: где - моменты на I, II, III валах, Нм Номер вала P, кВт n, об/мин Т, ...





Зубчатой с шарниром скольжения (16) где ν - число рядов роликовой или втулочной цепи; φt=B/t - коэффициент ширины цепи; для зубчатых цепей φt=2…8. 7. РАСЧЕТ ЦЕПНОЙ ПЕРЕДАЧИ МЕХАНИЧЕСКОГО ПРИВОДА ЛЕНТОЧНОГО ТРАНСПОРТЕРА 1. Учитывая небольшую передаваемую мощность N1 при средней угловой скорости малой звездочки, принимаем для передачи однорядную роликовую цепь. 2. ...

Разработка конструкций валов приводов содержит в себе все основные стадии проектирования, техническое предложение, эскизный проект. Алгоритм расчета валов приведен на рисунке 4.

Рисунок 4 Схема алгоритма расчета вала

Исходные данные для расчета: Т - сила действующая на вал; Fr, Ft,Fx - крутящие моменты. Так как на расчетном валу нет элементов вызывающих осевую силу Fx= 0, Ft = 20806, Fr = -20806, Т = 4383.

Определения опорных реакций

Расчет реакции опор

Реакции опор вала изображены на рисунке 5.

Рисунок 5 Эпюры вала тяговых звездочек

Реакция левой опоры.

где l1,l2,l3,l4 - расстояние между элементами конструкции вала, l1 = 100, l2 = 630 , l3=100, l4=110, = = 20806 H.

где = -20806 Н.

Реакция правой опоры.

Определяем изгибающие моменты для рассчитываемого вала

Горизонтальной плоскости Ми, от оси: для муфты Ми(м) = 0, левая опора Ми(л)= 0, для левой звездочки Ми(лз) = - 2039 Н*м, для правой звездочки Ми(пз) = -2081 Н*м, для правой опоры Ми(п) = -42 Н*м. Эпюры данных сил изображены на рисунке 5.

Вертикальной плоскости Ми, от оси: для муфты Ми(м) = 0, левая опора Ми(л)= 0, для левой звездочки Ми(лз) = 0, для правой звездочки Ми(пз) = 0,

для правой опоры Ми(п) = 0 . Эпюры данных сил изображены на рисунке 5.

Ми приведенная: для муфты Ми(м) = 4383 Н*м, левая опора Ми(л)= 4383 Н*м, для левой звездочки Ми(лз) = 4383 Н*м, для правой звездочки Ми(пз) = 3022 Н*м, для правой опоры Ми(п) = 42 Н*м. Эпюры данных сил изображены на рисунке 5.

Полный изгибающий момент равен: для муфты Т(м) = 4383 Н*м, левая опора Т(л)= 4383 Н*м, для левой звездочки Т(лз) = 4383 Н*м, для правой звездочки Т(пз) = 2192 Н*м, для правой опоры Т(п) = 0 Н*м. Эпюры данных сил изображены на рисунке 5.

Выбираем материал для вала по приведенным нагрузкам: Сталь 45 ГОСТ 1050-88.

Тихоходный вал:

Дано: Ft = 1546,155 H, Fr = 567,339 H, Lт = 0,093 м, Lт/2 = 0,0465 м,

1. Определение реакции в подшипниках в горизонтальной плоскости:

Rсх*Lт + Ft * Lт/2 = 0

Rсх*0,093+1546,155*0,0465 = 0

Rсх*0,093 = -71,896

Rсх = 71,896/0,093 = 773,075 Н

Ft* Lт/2+Rдх* Lт = 0

1546,155*0,0465+ Rдх *0,093 = 0

Rдх = 71,896/0,093 = 773,075 Н

Проверка: ∑Fnх = 0

Rдх + Rсх - Ft = 0 ; 773,075+773,075-1546,155 = 0 ; 0 = 0

М2лев = Rсх * Lт/2 = 773,075*0,0465 = 35,947 Нм

М2пр = М2лев = 35,947 Нм

М3лев = Rсх * Lт- Ft* Lт/2 = 71,895-71,895 = 0

2. Определение реакции в подшипниках в вертикальной плоскости:

Rсу*Lт + Fr * Lт/2 = 0

Rсу*0,093+567,339*0,0465 = 0

Rсу = 26,381/0,093 = 283,669 Н

Fr* Lт/2+Rду* Lт = 0

567,339*0,0465+ Rду *0,093 = 0

Rду = 26,38/0,093 = 283,669 Н

Проверка: ∑Fnу = 0

Rсу – Fr+ Rду = 0 ; 283,669 – 567,339+283,669 = 0 ; 0 = 0

Строим эпюры изгибающих моментов.

М2лев = Rсу * Lт/2 = 283,669 *0,0465 = 13,19 Нм

М2пр = М2лев = 13,19 Нм

М3лев = Rсу * Lт- Fr* Lт/2 = 26,381-26,381 = 0

3. Строим эпюры крутящих моментов.

Мк = М2 = Ft*d2/2 = 1546,155*184,959/2 = 145,13 Нм

4. Определяем суммарные радиальные реакции:

Rс = = 823,476 Н

Rд = = 823,476 Н

5. Определяем суммарные изгибающие моменты.

М2 = = 38,29 Нм

7. Проверочный расчет подшипников:

7.1 Базовая динамическая грузоподъемность подшипника Сr представляет собой постоянную радиальную нагрузку, которую подшипник может воспринять при базовой долговечности, составляющей 10 оборотов внутреннего кольца.

Сr = 29100 Н для быстроходного вала (табл. К27, стр.410 ), подшипник 306.

Сr = 25500 Н для тихоходного вала (табл. К27, стр.410 ), подшипник 207.

Требуемая долговечность подшипника Lh составляет для зубчатых редукторов Lh ≥ 60000 часов.

Пригодность подшипников определяется сопоставлением расчетной динамической грузоподъемности Crp, Н с базовой долговечностью L10h, ч. с требуемой Lh, ч. по условиям Crp ≤ Сr; L10h ≥ Lh.

Расчетная динамическая грузоподъемность Crp, Н и базовая долговечность L10h, ч. определяются по формулам:

Crp = ; L10h =

где RE – эквивалентная динамическая нагрузка, Н;

ω – угловая скорость соответствующего вала, с

М – показатель степени: М = 3 для шариковых подшипников (стр.128 ).

7.1.1 Определяем эквивалентную нагрузку RE = V* Rr*Кв*Кт, где



V – коэффициент вращения. V = 1 при вращающемся внутреннем кольце подшипника (стр.130 ).

Rr – радиальная нагрузка подшипника, Н. Rr = R – суммарная реакция подшипника.

Кв – коэффициент безопасности. Кв = 1,7 (табл. 9.4, стр.133 ).

Кт – температурный коэффициент. Кт = 1(табл. 9.5, стр.135 ).

Быстроходный вал: RE = 1*1,7*1323,499*1 = 2249,448 Н

Тихоходный вал: RE = 1*1,7*823,746*1 = 1399,909 Н

7.1.2 Рассчитываем динамическую грузоподъемность Crp и долговечность L10h подшипников:

Быстроходный вал: Crp =2249,448 = 2249,448*11,999 = 26991,126 Н; 26991,126 ≤ 29100 - условие выполнено.

75123,783 ≥ 60000 - условие выполнено.

Тихоходный вал: Crp = 1399,909 = 1399,909*7,559 = 10581,912 Н; 10581,912 ≤ 25500 - условие выполнено.

848550,469 ≥ 60000 - условие выполнено.

Проверочный расчет показал рентабельность выбранных подшипников.

7.1.3 Составляем табличный ответ:

Основные размеры и эксплуатационные размеры подшипников:

8. Конструктивная компоновка привода:

8.1 Конструирование зубчатых колес:

Зубчатое колесо:

На торцах зубьев выполняют фаски размером f = 1,6 мм. Угол фаски αф на шевронных колесах при твердости рабочих поверхностей НВ < 350, αф = 45°. Способ получения заготовки – ковка или штамповка.

8.1.1 Установка колеса на вал:

Для передачи вращающегося момента редукторной парой применяют шпоночное соединение посадкой Н7/r6.

8.1.2 При использовании в качестве редукторной пары шевронных колес заботится об осевом фиксировании колеса нет необходимости, однако для предотвращения осевого смещения подшипников в сторону колеса устанавливаем две втулки по обе стороны колеса.

8.2 Конструирование валов:

Переходный участок валов между двумя смежными ступенями разных диаметров выполняют канавкой:

8.2.2 На первой и третей ступени тихоходного вала применяем шпоночное соединение со шпонками, имеющими следующие размеры:

8.3 Конструирование корпуса редуктора:

Корпус изготовлен литьем из чугуна марки СЧ 15. Корпус разъемный. Состоит из основания и крышки. Имеет прямоугольную форму, с гладкими наружными стенками без выступающих конструктивных элементов. В верхней части крышки корпуса имеется смотровое окно, закрытое крышкой с отдушиной. В нижней части основания расположены две пробки – сливная и контрольная.

Толщина стенок и ребер жесткости δ, мм.:δ=1,12 =1,12*3,459=3,8 мм.

Для выполнения условия δ≥6 мм., принимаем δ = 10 мм.

8.3.1 Крепление редуктора к фундаментальной раме (плите), осуществляется четырьмя шпильками М12. Ширина фланса 32 мм., координата оси отверстия под шпильку 14 мм. Соединение крышки и основания корпуса осуществляется шестью винтами М8. Крышка смотрового окна крепится четырьмя винтами М6.

8.4 Проверочный расчет валов

8.4.1. Определяем эквивалентный момент по формуле для валов:

Быстроходный вал: Мэкв = = = 63,011 (Н)

Тихоходный вал: Мэкв = = = 150,096 (Н)

8.4.2. Определяем расчетные эквивалентные напряжения δэкв и сравниваем их с допустимым значением [δ]u. Выбираем для ведущего и ведомого вала сталь 45, для которой [δ]u = 50 мПа

d = 42 – диаметр тихоходного вала в опасном сечении.

Вывод: прочность быстроходного и тихоходного вала обеспечена.

Смазывание

9.1 Для редукторов общего назначения применяют непрерывное смазывание жидким маслом картерным непроточным способом (окунанием). Этот способ применяется для зубчатых передач с окружными скоростями от 0,3 до 12,5 м/сек.

9.2 Выбор сорта масла зависит от значения расчетного контактного напряжения в зубьях GН и фактической окружной скорости колес U. Сорт масла выбирается по таблице 10.29, стр.241. В данном редукторе при U = 1,161 м/сек, GН = 412 применяется масло сорта И-Г-А-68.

9.3 Для одноступенчатых редукторов объем масла определяют из расчета 0,4…0,8 л. на 1 квт передаваемой мощности. Р = 2,2 квт, U = 2,2*0,5 = 1,100 л. Объем масла в проектируемом редукторе составляет 1,100 л. Заполнение редуктора маслом осуществляется через смотровое окно. Контроль уровня масла осуществляется с помощью контрольной пробки. Слив масла производят через сливную пробку.

9.4 Смазывание подшипников:

В проектируемых редукторах для смазывания подшипников качения применяют жидкие и пластичные смазочные материалы. Смазочный материал набивают в подшипник вручную при снятой крышке подшипникового узла. Наиболее распространенной для подшипников качения – пластичной смазки типа солидол жировой (ГОСТ 1033-79), консталин жировой УТ-1 (ГОСТ 1957-75).

Страница 7 из 8

Определение реакции опор валов редуктора и подбор подшипников

Для определения реакции опор А и В составляем расчетную схему вала, где реальный вал рассматривается как шарнирно опертая балка, к которой приложены силы, действующие в зацеплении зубчатых колес.

В качестве примера приведена расчетная схема тихоходного вала редуктора с размещенным на нем зубчатым колесом. Одна из опор вала (опора А) является шарнирно-неподвижной, а опора В – шарнирно-подвижной. Также радиальные реакции Ray, Raz и Rby, Rbz и осевая реакция Rax. Размеры a= и l= определяются по эскизной компоновки редуктора. При этом радиальные опорные реакции считаются приложенными в точках пересечения плоскостей, а силы в зацеплении считаются приложенными на диаметре делительной окружности посредине ширины колеса.

Реакции опор определяют из шести уравнений статики вала – трех уравнений проекции сил, приложенных к валу, на оси X, Y, и Z и трех уравнений моментов этих сил относительно координатных осей.

Для первой схемы.

1)

2)

Для второй схемы.

1)

Суммарные радиальные реакции в опорах вычисляются по формулам

Если осевая нагрузка на опору Fa<=0.25 R, то назначают радиальные подшипники, если же Fa>0.25 R, то – радиально-упорные шариковые или конические роликовые подшипники.

Поскольку Fa 313 < 1080 назначаем радиальные подшипники. По книге Иванова определяем dвн и dвнеш. Проверяем подшипник на грузоподъемность.

Серия 208 d1вн=0,04 d1внеш=0,08 b1=16

Серия 210 d2вн=0,05 d2внеш=0,09 b2=20

Определяется расчетная динамическая грузоподъемность Срасч;

С учетом расчетного значения динамической грузоподъемности, подтверждается правильность предварительно выбранного подшипника по справочнику или каталогу на подшипники качения, или выбирается другой подшипник (тип и серия); при этом должно быть удовлетворено условие Срасч<=Стабл (Стабл – динамическая грузоподъемность подшипника по каталогу).

Расчет шпоночных соединений на прочность и подбор стандартных муфт

Зубчатые колеса имеют посадку на вал с гарантированным натягом.

наряду с этим используются шпоночные соединения. Шпонки в соответствии с ГОСТ 23360-78 подбираются по диаметру вала и проверяются по напряжению смятия, МПа,

где lp=40 мм - рабочая длина шпонки; d=55 мм – диаметр вала; h=10 мм – высота шпонки. Допускаемое напряжение =100 МПа.

Подбор муфты

Муфта упругая втулочно-пальцевая по ГОСТ 21424–75.

Отличается простотой конструкции и удобством монтажа и демонтажа. Обычно применяется в передачах от электродвигателя с малыми крутящими моментами. Упругими элементами здесь служат гофрированные рези­новые втулки. Из-за сравнительно небольшой толщины втулок муфты обладают малой податливостью и применяются в ос­новном для компенсации несоосносги валов в небольших пределах (1...5 мм; 0.3…0,6 мм; до 1).

1)Составляем расчет схемы вала:

Окружная сила F t = 7945,9 H

Радиальная сила F r = 2966,5 H

Осевая сила F a = 1811 Н

2)Составим расчетную схему вала:

Находим l 1:

l 1 = В П /2 + (5ч10) + в 2Т /2, (123)

l 1 = 37/2 + 10 + 63/2 = 60,5=60 мм.

Находим l 2:

l 2 = в 2Т /2 + (5ч10) + в 2Б + (5ч10) + В П /2, (124)

l 2 = 63/2 + 10 + 45 + 10 + 37/2 = 114 мм.

l 3 = 37/2+1,2*70+1,5*60=192 мм (125)

2) F M =vT 3 *250=7915,965 H

3) Ма =F a *d 2T /2=221578,5 H; (126)

М А = 0; (127)

Y В (60 + 114)-221578,6-2966,5*60 = 0, (128)

Y A (60+114)+114*2966,5= 221578,6

Проверка: ?Y=0, (130)

Y A +Y B -F r =0, (131)

670,13+2296,37-2966,5=0 - условие выполняется.

4) Определяем опорные реакции в горизонтальной плоскости:

Вследствие неизбежной несоостности соединения валов, тихоходный вал нагружают дополнительной силой F M - сила муфт.

Для двухступенчатого редуктора:

F M = 250vТ 2Т 2) =7915,96 H , (132)

Направляем силу F M , так чтобы она увеличивала напряжения и деформацию от силы F t (в худшем варианте).

Условие равновесия для точки

В: ?М В =0, (133)

X A (l 1 +l 2)- F t l 2 - F M l 3 =0 (133)

Запишем условие равновесия для точки

А: ?М А =0, (134)

X B (l 1 +l 2)+F t l 1 -F M (l 1 +l 2 +l 3)=0, (135)

Проверка: ?Х=0, (136)

X A + F t +X B - F M =0,

10,75+7945,9+15,55-7915,965=0 - условие выполняется.

5) Строим эпюру изгибающих моментов от сил F г и F а

M Cправ. =670,13*60 =40207,8 Н·м;

M Cлев. =Y A l 1 +Fa·d 2T /2=40207,8+221578,6 =261786,4 Н·м;

M B =Y A (l 1 +l 2)+ Fa·d 2T /2-F r l 2 =0 (Проверка!)

6) Строим эпюру моментов изгибающих от силы Ft.

M C. =-Х A l 1 =-10,75·60=-644,4·Н·м;

M B =Х A (l 1 +l 2)+Ft·l 2 =-1870,5+353,4=-1517,1 H·м;

M D =-X A (l 1 +l 2 +l 3)+ F t (l 1 +l 2)+X B l 3 ,

M D =-10,75*366+3,1*306+15,55*192=0(Проверка!)

Эпюра моментов изгибающих представлена в приложении А.

7)Строим суммарную эпюру изгибающих моментов

Ординаты суммарной эпюры изгибающих моментов от совместного действия этих сил находим по формуле:

M B =-1517,1 H·м;

Суммарная эпюра моментов изгибающих в приложение А.

8) Строим эпюру крутящих моментов:

Т = F t d 2т /2, (138)

Т = 7945,97525/2 = 2085817,12 Нм

Эпюра крутящих моментов в приложение А.

9) Определяем суммарные реакции опор:

Наиболее нагруженный является опора В, где действует радиальная сила =8458б51 Н.

Загрузка...
Top