Электромагнитные волны план-конспект урока по физике (11 класс) на тему. Конспект урока "Электромагнитная волна. Свойства электромагнитных волн" Электромагнитные волны конспект

Цель урока : формировать понятие о свойствах электромагнитных волн и их распространении.

Ход урока

Проверка домашнего задания методом индивидуального опроса

1. В чем заключаются принципы радиосвязи?

2. Что называется и как происходит амплитудная модуляция?

3. Что называется и как осуществляется детектирование?

4. Задача № 1000. Решение. T=2π QUOTE c=λ/T; T=λ/c; λ2/c2= 4π2LC; C= λ2/4π2Lc2; C=0,28 мкФ.

5. Задача № 1001. Решение. λ=c T; λ1=с T1; T = 2 π QUOTE ; T1= 2 π QUOTE ; λ= c· 2π QUOTE

Λ1= c· 2π QUOTE λ/λ1 = QUOTE ; λ2/λ₁2 = LC/ LC₁; C₁ = 1,54.

Изучение нового материала

1. Электромагнитные волны могут преломляться, отражаться, поглощаться…

Рассмотрим эти явления. Демонстрация специального набора, состоящего из генератора СВЧ, рупорной антенны, приемной антенны, диэлектрических тел, металлической пластины, призмы из парафина, решетки из металлических стержней.

2. Демонстрация и пояснения учителя к явлению поглощения электромагнитных волн.

Между рупорами антенн располагают разные диэлектрические тела. Замечают, что громкость звука значительно уменьшается. Часть волн поглотилась диэлектриками.

Вывод: диэлектрики поглощают электромагнитные волны.

3. Демонстрация и пояснения учителя к явлению отражения электромагнитных волн.

Вместо диэлектрических тел на пути радиоволны расположим металлическую пластину.

Звук не слышен совсем. Вследствие отражения волны не доходят до приемника.

Убедимся в справедливости закона отражения волн, что угол падения α равен углу отражения β. Рупоры антенн располагают под одинаковыми углами к металлическому листу. Звук исчезнет, если лист повернуть или убрать.

Вывод: металлы отражают электромагнитные волны.

4. Демонстрация и пояснения учителя к явлению преломления электромагнитных волн.

На границе диэлектрика электромагнитные волны изменяют свое направление – преломляются. Рупоры располагают под углом друг к другу и направляют их на призму из парафина. Наблюдают исчезновение звука при повороте призмы или при ее удалении.

Вывод: электромагнитные волны преломляются при попадании на границу диэлектрика.

5. Демонстрация поляризации и доказательство, что электромагнитные волны поперечные.


Если между генератором и приемником поместить решетку из параллельных металлических стержней, стержни должны быть или вертикально, или горизонтально расположенными. Когда вектор Е̄ параллелен стержням в них появляются токи, которые решетка отражает, как металлическая пластина.

Когда вектор Е̄ перпендикулярен стержням, токи в них не возбуждаются и электромагнитная волна другой плоскости – проходит через решетку.

На рисунке мы видим поляризованную волну.

Вывод: опыты доказывают, что электромагнитная волна поперечная, а также имеют свойство поляризации.

6. Распространение электромагнитных волн.

Физические свойства и форма Земли, состояние атмосферы оказывают воздействие на распространение волн.

Радиоволны распространяются в зависимости от своей длины волны.

Так короткие волны отражаются несколько раз от ионосферы и поверхности Земли.

Как бы «скользят» по поверхности Земли длинные волны. Свозь ионосферу приникают ультракороткие радиоволны.


ОГАОУ СПО

«Белгородский машиностроительный техникум»

Методическая разработка урока по физике

по теме

Преподаватель физики

Азаров Сергей Николаевич

Белгород

Методическая разработка урока по физике по теме

«Свойства электромагнитных волн, распространение их и применение»

Тема урока : Свойства электромагнитных волн. Распространение и применение электромагнитных волн.Цель урока : повторить механические волны и их характеристики; понятие электромагнитной волны; их свойства, распространение и применение. Показать роль эксперимента в торжестве теории. Расширить кругозор учащихся.Оборудование урока :
    На столе комплект приборов для изучения свойств электромагнитных волн, громкоговоритель, выпрямитель универсальный ВУП, усилитель низкой частоты, провода. Модель плоскополяризованной волны Таблица №1 “Классификация радиоволн и область их применения”. Плакат «Распространение радиоволн». Доклады учащихся. У каждого учащегося листок с заданием (самостоятельная работа)
Постановка задачи. На уроке мы изучим свойства электромагних волн на примере радиоволн (от мм до долей сотен км). Особенностью их распространения и применения. Услышите интересные сообщения ваших одноклассников о их применении. На столе пред вами листочки с заданиями, которые по ходу урока вами будут заполнены.Этапы урока :
    Актуализация опорных знаний (фронтальная беседа)
У электромагнитной волны нет горбов (впадин), в ней вектор напряженности электрического поля Е и магнитной индукции В изменяются по синусоидальному закону, взаимно перпендикулярны друг другу и направлению распространения волны. Демонстрируется модель электромагнитной волны, выполненная из цветной бумаги на спице. (При вращении ее создается впечатление, что вектора Е и В изменяются во всевозможных направлениях, перпендикулярных направлению ее движения) (рис. 65, стр.70 Физика-11, Г.Я.Мякишев, Б.Б.Буховцев)

II. Изучение нового материала . Разрабатывая теорию электромагнитного поля, Д.Максвелл в 60-х годах IXX века теоретически обосновал возможность существования электромагнитных волн (на основе составленных им дифференцированных уравнений) и даже вычислил скорость их распространения. Она совпала со скоростью света v=с=3*10 8 м/с. Это дало Максвеллу основание сделать заключение: свет – это один из видов электромагнитных волн.Выводы Максвелла были признаны далеко не всеми физиками – современниками Максвелла. Требовалось экспериментальное подтверждение существования электромагнитных волн. Теория без практики мертва!Такой эксперимент был выполнен в 1888 году немецким физиком Г.Герцем. Опыты Герца блестяще подтвердили теорию Максвелла. Но немецкий физик не видел перспективы их применения. А.С.Попов, русский физик, сумел найти им практическое применение, т.е. дал им путевку в жизнь. Была осуществлена безпроволочная связь с помощью электромагнитных волн.Для получения электромагнитной волны необходимо создать колебания заряда высокой частоты. Это возможно осуществить в открытом колебательном контуре. Интенсивность излучения электромагнитной волны пропорциональна 4-й степени частоты. Низкочастотные колебания (звуковые) антенна не излучает.Эксперимент: Современные технические устройства позволяют получить электромагнитные волны и изучить их свойства. Лучше использовать волны сантиметрового диапазона (=3см). Километровые волны излучаются специальным генератором сверхвысокой частоты (СВЧ). Генератор с помощью рупорной антенны излучает электромагнитные волны. Электромагнитная волна достигая приемника преобразуются в электрические колебания и усиливаются усилителем и подаются на громкоговоритель. Электромагнитные волны излучаются рупорной антенной в направлении от рупора. Приемная антенна в виде такого же рупора принимает волны, которые распространяются вдоль ее оси (общий вид установки изображен на рис.81).Демонстрируются свойства электромагнитных волн : 1) Прохождение и поглощение волн (картон, стекло, дерево, пластмасса и т.д.); 2).Отражение от металлической пластинки; 3)Изменение направления на границе диэлектрика (преломление); 4) Поперечность электромагнитных волн доказывается поляризацией с помощью металлических стержней; 5).Интерференция и дифракция электромагнитных волн.Учащиеся после демонстрации записывают свойства электромагнитных волн и составляют опорный конспект (задание А).Задание А .Свойства электромагнитных волн:

    Отражаются от проводников. Проходят через диэлектрики. Преломляются на границе диэлектрика. Интерферируют (используется пластинка из алюминия) Являются поперечными.
Таким образом, опыты доказали существование электромагнитных волн и помогли изучить их свойства.Классификация электромагнитных волн – (радиоволн).Обращается внимание учащихся на таблицу №1, на которой радиоволны распределены по видам, длинам, частотам и указана область применения их. После изучения учащиеся выполняют Задание “В”:
    Какие электромагнитные волны называют радиоволнами? Какие радиоволны используются в:
А) радиовещанииБ) телевиденииВ) космической связиТаблица 1. Классификация радиоволн. Распространение радиоволн. Как распространяется радиоволна – вопрос не второстепенный. На практике от решения этого вопроса зависит качество при приеме.На распространение радиоволн влияют следующие факторы:
    Физические и геометрические свойства поверхности Земли; Наличие ионосферы, т.е. ионизированного газа на высоте 100 – 300 км;
Искусственные сооружения или объекты (дома, самолеты и т.п.)Ионизация воздуха вызвана электромагнитным излучением Солнца и потоками заряженных частиц, излучаемых им. Проводящая ионосфера отражает радиоволны 10м. Но способность ионосферы отражать и поглощать радиоволны существенно меняется в зависимости от времени суток и времени года.На плакате «Распространение радиоволн» изображены наиболее типичные варианты распространения радиоволн разного диапазона около поверхности Земли. При прохождении радиоволн наблюдаются и интерференция, и дифракция (огибание выпуклой поверхности Земли)Применение радиоволн. Краткие сообщения учащихся:
    Радио как средство связи. Становление белгородского радио. История сотовой связи. Спутниковая связь. Микроволновая терапия. Спутниковая система ГЛОНАС.
Выполнение учащимися Задания “С”.Определить, на какой длине работают местные радиостанции:Вариант 1. Частоты станций. 4. Европа + = 103,6 МГц 5..Дорожное радио = 103,1 МГц 6 Радио Мир Белогорья = 100,9 МГцВарианты указаны на ваших листках.Закрепление :
    Почему зимой и ночью радиоприем лучше, чем летом и днем? Почему радиоприемники плохо работают, когда машина проезжает под эстакадой или мостом? Почему башни телецентра строят высокими? Почему при работе на коротких волнах возникают зоны “молчания”? Почему нельзя осуществить радиосвязь между подводными лодками, находящимися на некоторой глубине в океане?
Задание на дом: §§ 54,55

Сценарий проведения урока с использованием современных педагогических технологий.

Тема урока

«Электромагнитные волны»

Цели урока:

    Обучающая : Изучить электромагнитные волны, историю их открытия, характеристики и свойства.

    Развивающая : развивать умение наблюдать, сравнивать, анализировать

    Воспитывающая : формирование научно-практического интереса и мировоззрения

План урока:

    Повторение

    Ознакомление с историей открытия электромагнитных волн:

    1. Закон Фарадея (проведение опыта)

      Гипотеза Максвелла (проведение опыта)

  1. Графическое и математическое представление электромагнитной волны

    1. График электромагнитной волны

      Уравнения электромагнитной волны

      Характеристики электромагнитной волны: скорость распространения, частота, период, амплитуда

    Экспериментальное подтверждение существования электромагнитных волн.

    1. Закрытый колебательный контур

      Открытый колебательный контур. Опыты Герца

    Свойства электромагнитных волн

    Актуализация знаний

    Получение домашнего задания

Оборудование:

    Компьютер

    Интерактивная доска

    Проектор

    Катушка индуктивности

    Гальванометр

    Магнит

    Программно-аппаратный цифровой измерительный комплекс лабораторного оборудования «Научные развлечения»

    Персональные готовые карточки с графическим представлением электромагнитной волны, основными формулами и домашним заданием (Приложение 1)

    Видеоматериал из электронного приложения к комплекту Физика 11 класс (УМК Мякишев Г . Я ., Буховцев Б.Б.)

ДЕЯТЕЛЬНОСТЬ УЧИТЕЛЯ

Информационная карта

ДЕЯТЕЛЬНОСТЬ УЧЕНИКА

Мотивационный этап – Введение в тему урока

Дорогие ребята! Сегодня мы с вами приступим к изучению последнего раздела в большой теме «Колебания и волны» к электромагнитным волнам.

Мы узнаем историю их открытия, познакомимся с учеными, приложившим к этому свои руки. Узнаем как смогли впервые получить электромагнитную волну. Изучим уравнения, график и свойства электромагнитных волн.

Для начала, давайте вспомним, что такое волна и какие виды волн вы знаете?

Волна - это колебания, распространяющиеся во времени. Волны бывают механические и электромагнитные.

Механические волны – разнообразны, они распространяются в твердых, жидких, газообразных средах, можем ли мы их засечь с помощью наших органов чувств? Приведите примеры.

Да, в твердых средах – это могут быть землетрясения, колебания струн музыкальных инструментов. В жидкости- волны на море, в газах - это распространения звуков.

С электромагнитными волнами не все так просто. Мы с вами находимся в классе и совершенно не чувствуем и не осознаем какое количество электромагнитных волн пронизывает наше пространство. Может кто-то из вас уже может привести примеры волн, которые здесь присутствуют?

Радиоволны

Телевизионные волны

- Wi - Fi

Свет

Излучения мобильных телефонов и оргтехники

К электромагнитным излучениям относятся и радиоволны и свет от Солнца и рентген и радиация и многое другое. Если бы мы визуализировали бы их, то за таким огромным количеством электромагнитных волн не смогли бы увидеть друг друга. Они служат главным носителем информации в современной жизни и в то же время являются мощным отрицательным фактором, воздействующим на наше здоровье.

Организация деятельности учащихся по созданию определения электромагнитной волны

Сегодня мы с вами пройдем по следам великих ученых физиков, открывших и сгенерировавших электромагнитные волны, узнаем, какими уравнениями они описываются, исследуем их свойства и характеристики. Записываем тему урока «Электромагнитные волны»

Мы с вами знаем, что в 1831г. Английский физик Майкл Фарадей экспериментально открыл явление электромагнитной индукции. В чем оно проявляется?

Давайте повторим один из его опытов. Какова формула закона?

Учащимся проводится опыт Фарадея

Изменяющееся во времени магнитное поле приводит к появлению ЭДС индукции и индукционного тока в замкнутом контуре.

Да, в замкнутом контуре появляется индукционный ток, который мы регистрируем с помощью гальванометра

Таким образом, Фарадей опытным путем показал, что между магнетизмом и электричеством существует прямая динамическая связь. При этом, не получивший систематического образования и слабо владевший математическими методами Фарадей не мог подтвердить свои опыты теорией и математическим аппаратом. В этом ему помог другой выдающийся английский физик Джеймс Максвелл (1831-1879)

Максвелл дал несколько иную трактовку закону электромагнитной индукции: « Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты»

Итак, даже если проводник не замкнут, изменение магнитного поля вызывает в окружающем пространстве индукционное электрическое поле, которое является вихревым. Каковы свойства вихревого поля?

Свойства вихревого поля:

    Его линии напряженности замкнуты

    Не имеет источников

Также нужно добавить, что работа сил поля по перемещению пробного заряда по замкнутому пути равна не нулю, а ЭДС индукции

Кроме того Максвелл выдвигает гипотезу о существовании обратного процесса. Как вы думаете, какую?

«Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле»

А как мы можем получить изменяющееся во времени электрическое поле?

Изменяющимся во времени током

Что представляет из себя ток?

Ток- упорядоченно движущиеся заряженные частицы, в металлах- электроны

Тогда как они должны двигаться, чтобы ток был переменным?

С ускорением

Правильно, именно ускоренные движущиеся заряды вызывают переменное электрическое поле. Теперь попробуем зафиксировать изменение магнитного поля с помощью цифрового датчика, поднося его к проводам с переменным током

Ученик проводит эксперимент по наблюдению изменений магнитного поля

На экране компьютера мы наблюдаем, что при поднесении датчика к источнику переменных токов и его фиксации происходит непрерывное колебание магнитного поля, а значит перпендикулярно ему возникает переменное электрическое поле

Таким образом, возникает непрерывная взаимосвязанная последовательность: изменяющееся электрическое поле порождаем переменное магнитное, которое своим явлением снова порождает изменяющееся электрическое поле и т.д.

Однажды начавшийся в некоторой точке процесс изменения электромагнитного поля будет далее непрерывно захватывать все новые и новые области окружающего пространства. Распространяющееся переменное электромагнитное поле и есть электромагнитная волна.

Итак, гипотеза Максвелла была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе ему удалось вывести систему уравнений, описывающую взаимные превращения магнитного и электрического полей и даже определить их некоторые свойства.

Ребятам раздаются персональные карточки с графиком и формулами

Выкладки Максвелла:

Организация деятельности учащихся на определение скорости электромагнитных волн и других характеристик

ξ-диэлектрическая проницаемость вещества, мы считали емкость конденсатора, - магнитная проницаемость вещества – характеризуем магнитные свойства веществ, показывает будет вещество парамагнетиком, диамагнетиком или ферромагнетиком

    Давайте рассчитаем скорость электромагнитной волны в вакууме, тогда ξ = =1

Ребята рассчитывают скорость , после чего проверяем все на проекторе

    Длина, частота, циклическая частота и период колебаний волны вычисляются по знакомым нам из механики и электродинамике формулам, напомните мне их пожалуйста.

Ребята записывают на доске формулы λ=υТ, , , проверяем их правильность на слайде

Максвелл также теоретически вывел формулу энергии электромагнитной волны, причем . W эм ~ 4 Значит, чтобы легче зафиксировать волну, необходимо, чтобы она была высокой частоты.

Теория Максвелла вызвала резонанс в физическом обществе, но экспериментально он не успел подтвердить свою теорию, тогда эстафету подхватил германский физик Генрих Герц (1857- 1894). Удивительно, но Герц хотел опровергнуть теорию Максвелла, для этого он придумал простое и гениальное решение по получению электромагнитных волн.

Давайте вспомним, где мы уже наблюдали взаимное превращение электрической и магнитной энергий?

В колебательном контуре.

В закрытом колебательном контуре, из чего он состоит?

Это цепь, состоящая из конденсатора и катушки, в которой происходят взаимные электромагнитные колебания

Все верно, только колебания происходили «внутри» цепи и главной задачей ученых стало генерирование этих колебаний в пространство и, естественно, их регистрация.

Мы уже сказали, что энергия волны прямо пропорциональна четвертой степени частоты . W эм ~ν 4 . Значит, чтобы легче зафиксировать волну, необходимо, чтобы она была высокой частоты. Какой формулой определяется частота в колебательном контуре?

Частота колебаний в закрытом контуре

Что мы можем сделать, чтобы увеличить частоту?

Уменьшить емкость и индуктивность, а значит уменьшить количество витков в катушке и увеличить расстояние меду пластинами конденсатора.

Тогда Герц постепенно «распрямил» колебательный контур, превратив его в стержень, названный им "вибратором".

Вибратор состоял из двух проводящих сфер диаметром 10-30 см, укрепленных на концах проволочного разрезанного посредине стержня. Концы половин стержня в месте разреза оканчивались небольшими полированными шариками, образуя искровой промежуток в несколько миллиметров.

Сферы подсоединялись ко вторичной обмотке катушки Румкорфа, являвшейся источником высокого напряжения.

Индуктор Румкорфа создавал на концах своей вторичной обмотки очень высокое, порядка десятков киловольт, напряжение, заряжающее сферы зарядами противоположных знаков. В определенный момент напряжение между шарами было больше напряжения пробоя и в искровом промежутке вибратора возникала электрическая искра , происходило излучение электромагнитных волн.

Давайте вспомним явление грозы. Молния – это та же искра. Как появляется молния?

Рисунок на доске:

Если между землей и небом возникает большая разность потенциалов, происходит «замыкание» цепи – возникает молния, ток проводится через воздух, несмотря на то, что он диэлектрик, напряжение снимается.

Таким образом, Герцу удалось сгенерировать э-м волну. Но надо еще её зарегистрировать, для этой цели в качестве детектора, или приемника, Герц использовал кольцо (иногда прямоугольник) с разрывом - искровым промежутком, который можно было регулировать. Переменное электромагнитное поле возбуждало в детекторе переменный ток, если частоты вибратора и приемника совпадали, происходил резонанс и в приемнике также возникала искра, которую визуально можно было зафиксировать.

Своими опытами Герц доказал:

1)существование электромагнитных волн;

2)волны хорошо отражаются от проводников;

3)определил скорость волн в воздухе (она примерно равна скорости в вакууме).

Проведем опыт по отражению электромагнитных волн

Показывается опыт по отражению электромагнитных волн: телефон ученика убирается в полностью металлический сосуд и друзья пытаются ему дозвониться.

Сигнал не проходит

Ребята отвечают на вопрос опыта, почему нет сигнала сотовой связи.

Теперь давайте посмотрим видеофрагмент по свойствам электромагнитных волн и запишем их.

    Отражение э-м волн: волны хорошо отражаются от металлического листа, причем угол падения равен углу отражения

    Поглощение волн: э-м волны частично поглощаются при переходе через диэлектрик

    Преломление волн: э-м волны меняют свое направление при переходе из воздуха в диэлектрик

    Интерференция волн: сложение волн от когерентных источников (подробнее изучим в оптике)

    Дифракция волн – отгибание волнами препятствий

Показывается видеофрагмент « Свойства электромагнитных волн»

Сегодня мы с вами узнали историю электромагнитных волн от теории до эксперимента. Итак, ответьте на вопросы:

    Кто открыл закон о возникновении электрического поля при изменении магнитного?

    В чем заключалась гипотеза Максвелла о порождении изменяющего магнитного поля?

    Что такое электромагнитная волна?

    На каких векторах она построена?

    Что произойдет с длиной волны, если частоту колебания заряженных частиц увеличить в 2 раза?

    Какие свойства электромагнитных волн вы запомнили?

Ответы ребят:

    Фарадей – экспериментально открыл закон ЭДС и Максвелл расширил это понятие в теории

    Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле

    Распространяющееся в пространстве электромагнитное поле

    Напряженность, магнитная индукция, скорость

    Уменьшится в 2 раза

    Отражение, преломление, интерференция, дифракция, поглощение

Электромагнитные волны имеют различное применение в зависимости от своей частоты или длины волны. Они несут человечеству пользу и вред, поэтому к следующему уроку подготовьте сообщения или презентации на следующие темы:

    Как я использую электромагнитные волны

    Электромагнитное излучение в космосе

    Источники электромагнитного излучения у меня дома, их влияние на здоровье

    Воздействие электромагнитного излучения от сотового телефона на физиологию человека

    Электромагнитное оружие

А также решите к следующему занятию задачи:

    i =0.5 cos 4*10 5 π t

Задачи на карточках.

Спасибо за внимание!

Приложение 1

Электромагнитная волна:

Ф/м –электрическая постоянная

1,25664*10 -6 Гн/м –магнитная постоянная

Задачи:

    Частота вещания радиостанции «Маяк» в Московском регионе составляет 67,22Мгц. На какой длине волны работает эта радиостанция.

    Сила тока в открытом колебательном контуре изменяется по закону i =0.5 cos 4*10 5 π t . Найдите длину излучаемой волны.

"Электромагнитные волны".

Цели урока:

Учебная:

  • познакомить учащихся с особенностями распространения электромагнитных волн;
  • рассмотреть этапы создания теории электромагнитного поля и экспериментального подтверждения этой теории;

Воспитательная: ознакомить учащихся с интересными эпизодами биографии Г. Герца, М. Фарадея, Максвелла Д. К., Эрстеда Х.К., А.С. Попова;

Развивающая: способствовать развитию интереса к предмету.

Демонстрации : слайды, видеоролик.

ХОД УРОКА

Сегодня мы познакомимся с особенностями распространения электромагнитных волн, отметим этапы создания теории электромагнитного поля и экспериментального подтверждения этой теории, остановимся на некоторых биографических данных.

Повторение.

Для осуществления целей урока нам необходимо повторить некоторые вопросы:

Что такое волна, в частности механическая волна? (Распространение колебаний частиц вещества в пространстве)

Какие величины характеризуют волну? (длина волны, скорость волны, период колебаний и частота колебаний)

Какая математическая связь между длиной волны и периодом колебаний? (длина волны равна произведению скорости волны и периода колебаний)

Изучение нового материала.

Электромагнитная волна во многом схожа с механической волной, но есть и различия. Основное отличие состоит в том, что для распространения этой волны не нужна среда. Электромагнитная волна - результат распространения переменного электрического поля и переменного магнитного полей в пространстве, т.е. электромагнитного поля.

Электромагнитное поле создается ускоренно движущимися заряженными частицами. Его наличие относительно. Это особый вид материи, является совокупностью переменных электрического и магнитного полей.

Электромагнитная волна - распространение электромагнитного поля в пространстве.

Рассмотрим график распространения электромагнитной волны.

Схема распространения электромагнитной волны представлена на рисунке. Необходимо запомнить, что вектора напряженности электрического поля, магнитной индукции и скорости распространения волны взаимно перпендикулярны.

Этапы создания теории электромагнитной волны и ее практического подтверждения.

Ханс Кристиан Эрстед (1820 г.) датский физик, непременный секретарь Датского королевского общества (с 1815 года).

С 1806 года - профессор этого университета, с 1829 года одновременно директор Копенгагенской политехнической школы. Работы Эрстеда посвящены электричеству, акустике, молекулярной физике.

В 1820 году он обнаружил действие электрического тока на магнитную стрелку, что привело к возникновению новой области физики - электромагнетизма. Идея взаимосвязи между различными явлениями природы - характерна для научного творчества Эрстеда; в частности он один из первых высказал мысль, что свет представляет собой электромагнитные явления. В 1822-1823 годах независимо от Ж. Фурье переоткрыл термоэлектрический эффект и построил первый термоэлемент. Экспериментально изучал сжимаемость и упругость жидкостей и газов, изобрел пьезометр (1822). Проводил исследования по акустике, в частности пытался обнаружить возникновение электрических явлений за счет звука. Исследовал отклонения от закона Бойля-Мариотта.

Эрстед был блестящим лектором и популяризатором, организовал в 1824 году Общество по распространению естествознания, создал первую в Дании физическую лабораторию, способствовал улучшению преподавания физики в учебных заведениях страны.

Эрстед почетный член многих академий наук, в частности Петербургской АН (1830).

Майкл Фарадей (1831 г.)

Гениальный ученый Майкл Фарадей был самоучкой. В школе получил только начальное образование, а затем в силу жизненных проблем работал и попутно изучал научно-популярную литературу по физике и химии. Позже Фарадей стал лаборантом у известного в то время химики, затем превзошел своего учителя и сделал много важного для развития таких наук, как физика и химия. В 1821 году Майкл Фарадей узнал об открытии Эрстеда, которое заключалось в том, что электрическое поле создает магнитное поле. После обдумывания этого явления, Фарадей задался целью получить из магнитного поля электрическое поле и в качестве постоянного напоминания он носил в кармане магнит. Через десять лет он претворил свой девиз в жизнь. Превратил магнетизм в электричество: магнитное поле создает - электрический ток

Ученый-теоретик вывел уравнения, которые носят его имя. Эти уравнения говорили о том, что переменные магнитное и электрическое поля создают друг друга. Из этих уравнений следует, что переменное магнитное поле создает вихревое электрическое поле, а оно создает переменное магнитное поле. Кроме того, в его уравнениях была постоянная величина - это скорость света в вакууме. Т.е. из этой теории следовало, что электромагнитная волна распространяется в пространстве со скоростью света в вакууме. Поистине гениальная работа была оценена многими учеными того времени, а А. Эйнштейн говорил, что самым увлекательным во время его учения была теория Максвелла.

Генрих Герц (1887 г.)

Генрих Герц родился болезненным ребенком, но стал очень сообразительным учеником. Ему нравились все предметы, которые изучал. Будущий ученый любил писать стихи, работать на токарном станке. После окончания гимназии Герц поступил в высшее техническое училище, но не пожелал быть узким специалистом и поступил в Берлинский университет, чтобы стать ученым. После поступления в университет Генрих Герц стремиться заниматься в физической лаборатории, но для этого необходимо было заниматься решением конкурсных задач. И он взялся за решение следующей задачи: обладает ли электрический ток кинетической энергией? Эта работа была рассчитана на 9 месяцев, но будущий ученый решил ее через три месяца. Правда, отрицательный результат, с современной точки зрения неверен. Точность измерения необходимо было увеличить в тысячи раз, что тогда не представлялось возможным.

Еще будучи студентом, Герц защитил докторскую диссертацию на "отлично" и получил звание доктора. Ему было 22 года. Ученый успешно занялся теоретическими исследованиями. Изучая теорию Максвелла, он показал высокие экспериментальные навыки, создал прибор, который называется сегодня антенной и с помощью передающей и приемной антенн осуществил создание и прием электромагнитной волны и изучил все свойства этих волн. Он понял, что скорость распространения этих волн конечна и равна скорости распространения света в вакууме. После изучения свойств электромагнитных волн он доказал, что они аналогичны свойствам света. К сожалению, эта робота окончательно подорвала здоровье ученого. Сначала отказали глаза, затем заболели уши, зубы и нос. Вскоре он скончался.

Генрих Герц завершил огромный труд, начатый Фарадеем. Максвелл преобразовал представления Фарадея в математические формулы, а Герц превратил математические образы в видимые и слышимые электромагнитные волны. Слушая радио, просматривая телевизионные передачи, мы должны помнить об этом человеке. Не случайно единица частоты колебаний названа в честь Герца, и совсем не случайно первыми словами, переданными русским физиком А.С. Поповым с помощью беспроводной связи, были "Генрих Герц", зашифрованные азбукой Морзе.

Попов Александр Сергеевич (1895 г.)

Попов совершенствовал приемную и передающую антенну и вначале была осуществлена связь на расстоянии 250 м, затем на 600 м. И в 1899 году ученый установил радиосвязь на расстоянии 20 км, а в 1901 - на 150 км. В 1900 году радиосвязь помогла провести спасательные работы в Финском заливе. В 1901 году итальянский инженер Г. Маркони осуществил радиосвязь через Атлантический океан.

Посмотрим видеофрагмент, где рассмотрены некоторые свойства электромагнитной волны. После просмотра ответим на вопросы.

Почему лампочка в приемной антенне изменяет свой накал при внесении металлического стержня?

Почему этого не происходит при замене металлического стержня на стеклянный?

Закрепление.

Ответьте на вопросы:

Что такое электромагнитная волна?

Кто создал теорию электромагнитной волны?

Кто изучил свойства электромагнитных волн?

Заполните таблицу ответов в тетради, помечая номер вопроса.

Как зависит длина волны от частоты колебания?

(Ответ: Обратно пропорционально)

Что произойдет с длиной волны, если период колебания частиц увеличится в 2 раза?

(Ответ: Увеличится в 2 раза)

Как изменится частота колебания излучения при переходе волны в более плотную среду?

(Ответ: Не изменится)

Что является причиной излучения электромагнитной волны?

(Ответ: Заряженные частицы, движущиеся с ускорением)

Где используются электромагнитные волны?

(Ответ: сотовый телефон, микроволновая печь, телевидение, радиовещание и т.д.)

(Ответы к вопросам)

Домашнее задание.

Необходимо подготовить сообщения о различных видах электромагнитного излучения, перечислив их особенности и рассказать об их применении в жизни человека. Сообщение по длительности должно составлять пять минут.

  1. Виды электромагнитных волн:
  2. Волны звуковой частоты
  3. Радиоволны
  4. СВЧ излучение
  5. Инфракрасное излучение
  6. Видимый свет
  7. Ультрафиолетовое излучение
  8. Рентгеновское излучение
  9. Гамма излучение

Подведение итогов.

Литература.

  1. Касьянов В.А. Физика 11 класс. - М.: Дрофа, 2007
  2. Рымкевич А.П. Сборник задач по физике. - М.: Провсещение, 2004.
  3. Марон А.Е., Марон Е.А.Физика 11 класс. Дидактические материалы. - М.: Дрофа, 2004.
  4. Томилин А.Н. Мир электричества. - М.: Дрофа, 2004.
  5. Энциклопедия для детей. Физика. - М.: Аванта+, 2002.
  6. Ю. А. Храмов Физики. Биографический справочник, - М., 1983

Тема. Шкала электромагнитных волн. Свойства электромагнитных волн разных диапазонов частот. Электромагнитные волны в природе и технике

Цели урока: рассмотреть шкалу электромагнитных волн, дать характеристику волнам разных диапазонов частот; показать роль различных видов излучений в жизни человека, влияние различных видов излучений на человека; систематизировать материал по теме и углубить знания учащихся об электромагнитных волнах; развивать устную речь учащихся, творческие навыки учащихся, логику, память; познавательные способности; формировать интерес учащихся к изучению физики; воспитывать аккуратность, трудолюбие

Тип урока: урок формирования новых знаний

Форма проведения: лекция с презентацией

Оборудование: компьютер, мультимедийный проектор, презентация «Шкала электромагнитных волн»

Ход урока

1. Организационный момент

2. Мотивация учебной и познавательной деятельности

Вселенная - это океан электромагнитных излучений. Люди живут в нем, по большей части, не замечая пронизывающих окружающее пространство волн. Греясь у камина или зажигая свечу, человек заставляет работать источник этих волн, не задумываясь об их свойствах. Но знание - сила: открыв природу электромагнитного излучения, человечество в течение XX столетия освоило и поставило себе на службу самые различные его виды.

3. Постановка темы и целей урока

Сегодня мы с вами совершим путешествие по шкале электромагнитных волн, рассмотрим виды электромагнитного излучения разных диапазонов частот. Запишите тему урока: «Шкала электромагнитных волн. Свойства электромагнитных волн разных диапазонов частот. Электромагнитные волны в природе и технике».

Каждое излучение мы будем изучать по следующему обобщенному плану. Обобщенный план для изучения излучения:

1. Название диапазона

2. Частота

3. Длина волны

4. Кем был открыт

5. Источник

6. Индикатор

7. Применение

8. Действие на человека

В ходе изучения темы вы должны заполнить следующую таблицу:

"Шкала электромагнитных излучений"

4. Изложение нового материала

Длина электромагнитных волн бывает самой различной: от значений порядка 1013 м (низкочастотные колебания) до 10-10 м (g- лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее, именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.

Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и g -излучение. Самое коротковолновое g -излучение испускает атомные ядра.

Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.
Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.

Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь, это относится к рентгеновскому и g-излучению, сильно поглощаемым атмосферой.

По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.

Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g-лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Рассмотрим каждое излучение.

Низкочастотное излучение возникает в диапазоне частот от 3 · 10-3 до 3 . 105 Гц. Этому излучению соответствует длина волны от 1013 - 105 м. Излучением таких, сравнительно малых частот, можно пренебречь. Источником низкочастотного излучения являются генераторы переменного тока. Применяются при плавке и закалке металлов.

Радиоволны занимают диапазон частот 3·105 - 3·1011 Гц. Им соответствует длина волны 10 5 - 10 -3 м. Источником радиоволн, так же как и низкочастотного излучения является переменный ток. Также источником являются генератор радиочастот, звезды, в том числе Солнце, галактики и метагалактики. Индикаторами являются вибратор Герца, колебательный контур.

Большая частота радиоволн, по сравнению с низкочастотным излучением приводит к заметному излучению радиоволн в пространство. Это позволяет использовать их для передачи информации на различные расстояния. Передаются речь, музыка (радиовещание), телеграфные сигналы (радиосвязь), изображения различных объектов (радиолокация).

Радиоволны используются для изучения структуры вещества и свойств той среды, в которой они распространяются. Исследование радиоизлучения космических объектов - предмет радиоастрономии. В радиометеорологии изучают процессы по характеристикам принимаемых волн.

Инфракрасное излучение занимает диапазон частот 3*1011 - 3,85*1014 Гц. Им соответствует длина волны 2·10 -3 - 7,6 ·10 -7 м.

Инфракрасное излучение было открыто в 1800 году астрономом Уильямом Гершелем. Изучая повышение температуры термометра, нагреваемого видимым светом, Гершель обнаружил наибольшее нагревание термометра вне области видимого света (за красной областью). Невидимое излучение, учитывая его место в спектре, было названо инфракрасным. Источником инфракрасного излучения является излучение молекул и атомов при тепловых и электрических воздействиях. Мощный источник инфракрасного излучения - Солнце, около 50% его излучения лежит в инфракрасной области. На инфракрасное излучение приходится значительная доля (от 70 до 80 %) энергии излучения ламп накаливания с вольфрамовой нитью. Инфракрасное излучение испускает электрическая дуга и различные газоразрядные лампы. Излучения некоторых лазеров лежит в инфракрасной области спектра. Индикаторами инфракрасного излучения являются фото и терморезисторы, специальные фотоэмульсии. Инфракрасное излучение используют для сушки древесины, пищевых продуктов и различных лакокрасочных покрытий (инфракрасный нагрев), для сигнализации при плохой видимости, дает возможность применять оптические приборы, позволяющие видеть в темноте, а также при дистанционном управлении. Инфракрасные лучи используются для наведения на цель снарядов и ракет, для обнаружения замаскированного противника. Эти лучи позволяют определить различие температур отдельных участков поверхности планет, особенности строения молекул вещества (спектральный анализ). Инфракрасная фотография применяется в биологии при изучении болезней растений, в медицине при диагностике кожных и сосудистых заболеваний, в криминалистике при обнаружении подделок. При воздействии на человека вызывает повышение температуры человеческого тела.

Видимое излучение - единственный диапазон электромагнитных волн, воспринимаемым человеческим глазом. Световые волны занимают достаточно узкий диапазон: 380 - 670 нм (n = 3,85 .1014 - 8 . 1014 Гц). Источником видимого излучения являются валентные электроны в атомах и молекулах, изменяющие свое положение в пространстве, а также свободные заряды, движущиеся ускоренно. Эта часть спектра дает человеку максимальную информацию об окружающем мире. По своим физическим свойствам она аналогична другим диапазонам спектра, являясь лишь малой частью спектра электромагнитных волн. Излучение, имеющее разную длину волны (частоты) в диапазоне видимого излучения, оказывает различное физиологическое воздействие на сетчатку человеческого глаза, вызывая психологическое ощущение света. Цвет - не свойство электромагнитной световой волны самой по себе, а проявление электрохимического действия физиологической системы человека: глаз, нервов, мозга. Приблизительно можно назвать семь основных цветов, различаемых человеческим глазом в видимом диапазоне (в порядке возрастания частоты излучения): красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Запоминание последовательности основных цветов спектра облегчает фраза, каждое слово которой начинается с первой буквы названия основного цвета: «Каждый Охотник Желает Знать, Где Сидит Фазан». Видимое излучение может влиять па протекание химических реакций в растениях (фотосинтез) и в организмах животных и человека. Видимое излучение испускают отдельные насекомые (светлячки) и некоторые глубоководные рыбы за счет химических реакций в организме. Поглощение растениями углекислого газа в результате процесса фотосинтеза и выделения кислорода способствует поддержанию биологической жизни на Земле. Также видимое излучение применяется при освещении различных объектов.

Свет - источник жизни на Земле и одновременно источник наших представлений об окружающем мире.

Ультрафиолетовое излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучением в пределахдлин волн 3,8 ∙10 -7 - 3∙10 -9 м. (n=8*1014 - 3*1016 Гц). Ультрафиолетовое излучение было открыто в 1801 году немецким ученым Иоганном Риттером. Изучая почернение хлористого серебра под действием видимого света, Риттер обнаружил, что серебро чернеет еще более эффективно в области, находящейся за фиолетовым краем спектра, где видимое излучение отсутствует. Невидимое излучение, вызвавшее это почернение, было названо ультрафиолетовым.

Источник ультрафиолетового излучения — валентные электроны атомов и молекул, также ускоренно движущиеся свободные заряды.

Излучение накаленных до температур - 3000 К твердых тел содержит заметную долю ультрафиолетового излучения непрерывного спектра, интенсивность которого растет с увеличением температуры. Более мощный источник ультрафиолетового излучения - любая высокотемпературная плазма. Для различных применений ультрафиолетового излучения используются ртутные, ксеноновые и др. газоразрядные лампы. Естественные источники ультрафиолетового излучения - Солнце, звезды, туманности и другие космические объекты. Однако лишь длинноволновая часть их излучения (l > 290 нм) достигает земной поверхности. Для регистрации ультрафиолетового излучения при

l = 230 нм используются обычные фотоматериалы, в более коротковолновой области к нему чувствительны специальные маложелатиновые фотослои. Применяются фотоэлектрические приемники,использующие способность ультрафиолетового излучения вызывать ионизацию и фотоэффект: фотодиоды,ионизационные камеры, счетчики фотонов, фотоумножители.

В малых дозах ультрафиолетовое излучение оказывает благотворное, оздоровительное влияние на человека, активизируя синтез витамина D в организме, а также вызывая загар. Большая доза ультрафиолетового излучения может вызвать ожог кожи и раковые новообразования (в 80 % излечимые). Кроме того, чрезмерное ультрафиолетовое излучение ослабляет иммунную систему организма, способствуя развитию некоторых заболеваний. Ультрафиолетовое излучение оказывает также бактерицидное действие: под действием этого излучения гибнут болезнетворные бактерии.

Ультрафиолетовое излучение применяется в люминесцентных лампах, в криминалистике (по снимкам обнаруживают подделки документов), в искусствоведении (с помощью ультрафиолетовых лучей можно обнаружить на картинах не видимые глазом следы реставрации). Практически не пропускает ультрафиолетовое излучение оконное стекло, т.к. его поглощает оксид железа, входящий в состав стекла. По этой причине даже в жаркий солнечный день нельзя загореть в комнате при закрытом окне.

Человеческий глаз не видит ультрафиолетовое излучение, т.к. роговая оболочка глаза и глазная линза поглощают ультрафиолет. Ультрафиолетовое излучение видят некоторые животные. Например, голубь ориентируется по Солнцу даже в пасмурную погоду.

Рентгеновское излучение - это электромагнитное ионизирующее излучение, занимающее спектральную область между гамма - и ультрафиолетовым излучением в пределах длин волн от 10-12 - 10-8 м (частот 3*1016 - 3-1020 Гц). Рентгеновское излучение было открыто в 1895 году немецким физиком В. К. Рентгеном. Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка, в которой ускоренные электрическим нолем электроны бомбардируют металлический анод. Рентгеновское излучение может быть получено при бомбардировке мишени ионами высокой энергии. В качестве источников рентгеновского излучения могут служить также некоторые радиоактивные изотопы, синхротроны - накопители электронов. Естественными источниками рентгеновского излучения является Солнце и другие космические объекты

Изображения предметов в рентгеновском излучении получают на специальной рентгеновской фотопленке. Рентгеновское излучение можно регистрировать с помощью ионизационной камеры, сцинтилляционного счетчика, вторично-электронных или каналовых электронных умножителей, микроканальных пластин. Благодаря высокой проникающей способности рентгеновское излучение применяется в рентгеноструктурном анализе (исследовании структуры кристаллической решетки), при изучении структуры молекул, обнаружении дефектов в образцах, в медицине (рентгеновские снимки, флюорография, лечение раковых заболеваний), в дефектоскопии (обнаружение дефектов в отливках, рельсах), в искусствоведении (обнаружение старинной живописи, скрытой под слоем поздней росписи), в астрономии (при изучении рентгеновских источников), криминалистике. Большая доза рентгеновского излучения приводит к ожогам и изменению структуры крови человека. Создание приемников рентгеновского излучения и размещение их на космических станциях позволило обнаружить рентгеновское излучение сотен звезд, а также оболочек сверхновых звезд и целых галактик.

Гамма излучение - коротковолновое электромагнитное излучение, занимающее весь диапазон частот n = 8∙1014- 10 17 Гц, что соответствует длинам волн l = 3,8·10 -7- 3∙10-9 м. Гамма-излучение было открыто французским ученым Полем Вилларом в 1900 году. Изучая излучение радия в сильном магнитном поле, Виллар обнаружил коротковолновое электромагнитное излучение, не отклоняющееся, как и свет, магнитным полем. Оно было названо гамма-излучением. Гамма-излучение связано с ядерными процессами, явлениями радиоактивного распада, происходящими с некоторыми веществами, как на Земле, так и в космосе. Гамма-излучение можно регистрировать с помощью ионизационных и пузырьковых камер, а также с помощью специальных фотоэмульсий. Используются при исследовании ядерных процессов, в дефектоскопии. Гамма-излучение отрицательно воздействует на человека.

Итак, низкочастотное излучение, радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение, g-излучение представляют собой различные виды электромагнитного излучения.

Если мысленно разложить эти виды по возрастанию частоты или убыванию длины волны, то получится широкий непрерывный спектр - шкала электромагнитных излучений (учитель показывает шкалу). К опасным видам излучения относятся: гамма-излучение, рентгеновские лучи и ультрафиолетовое излучение, остальные - безопасны.

Деление электромагнитных излучений по диапазонам условное. Четкой границы между областями нет. Названия областей сложились исторически, они лишь служат удобным средством классификации источников излучений.

Все диапазоны шкалы электромагнитных излучений имеют общие свойства:

  1. физическая природа всех излучений одинакова
  2. все излучения распространяются в вакууме с одинаковой скоростью, равной 3*108 м/с
  3. все излучения обнаруживают общие волновые свойства (отражение, преломление, интерференцию, дифракцию, поляризацию)

5. Подведение итогов урока

В заключение урока учащиеся заканчивают работу над таблицей.

Вывод: Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко — при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко — при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства. Все это служит подтверждением закона диалектики (переход количественных изменений в качественные).

6. Домашнее задание: § 49 (читать), конспект (выучить), заполнить в таблице

последний столбец (действие ЭМИ на человека) и

подготовить сообщение о применении ЭМИ

Загрузка...
Top