Измерение частоты вращения электродвигателя с помощью датчика холла. Датчики частоты вращения колеса Магнитные системы датчиков частоты вращения электродвигателя

Когда у автолюбителей возникают те или иные проблемы с двигателем, они начинают интересоваться, какой датчик отвечает за обороты двигателя, поскольку первое подозрение зачастую падает на данные устройства.

Однако это не всегда так, ведь обороты могут «плавать» по различным причинам. Лучше всего для начала убедиться в том, что какие-либо другие поломки отсутствуют, а измерители проверять после. Так или иначе, если вы хотите обнаружить нужный датчик, вам необходимо знать, как он выглядит, и где его искать.

Основные понятия

Чтобы синхронизировать работу систем зажигания, а также впрыска, предусматривается датчик оборотов, или, как его называют, измеритель частоты вращения. Именно он передаёт в электроблок, управляющий мотором, необходимые данные о том, какие вращения поддерживает коленчатый вал в данный момент.

Этот измеритель силового агрегата – важнейший элемент автомобиля, без которого не обходится взаимодействие многих систем, ведь он помогает обеспечивать корректное функционирование всей машины в целом.

Электронный управляющий блок авто обрабатывает особые сигналы, которые посылает этот измеритель, чтобы выяснить:

  • количество впрыскиваемого топлива в данный момент;
  • момент впрыска;
  • время, требуемое для активации клапана адсорбера;
  • момент зажигания (у бензиновых моторов);
  • угол поворачивания распределительного вала во время работы системы по изменению фаз механизма газораспределения.

Чтобы определить работоспособность измерителя, необходимо узнать его местонахождение.

Место расположения

Датчик частоты вращения, или индукционный измеритель, обычно располагается над маркерным диском автомобиля.

Диск, в свою очередь, может находиться:

  • на маховике;
  • на коленвале внутри блока цилиндров – такое бывает у марок Ford, Opel и т.д.;
  • спереди моторного отсека на коленвале, вместе со шкивом привода допагрегатов (Jaguar, BMW, ВАЗ и т.д.).

Лучше всего, когда маркерные зубцы маховика предназначаются лишь для измерения оборотов мотора. Чуть хуже, если маркерными являются стартерные зубцы: эта особенность присутствует у автомашин марок Audi и Volvo.

Небольшая кривизна зубца маховика или маленький скол, присутствующий на нём, часто могут стать причиной в нарушении работы системы зажигания, из-за чего силовой агрегат не может функционировать на повышенных частотах вращения. В этом случае зачастую происходит хаотичное искрообразование, так как блок управления неправильно определяет количество зубцов.

Важные особенности

Следует обратить внимание, что на некоторых автомобилях датчик частоты вращения заменяет измеритель Холла: данное приспособление может передавать в главный блок управления не только сигнал о фазах механизма газораспределения, но и обороты двигателя. Если у вас именно такая ситуация, то найти прибор можно вблизи распределительного вала.

В случае, когда измеритель частоты вращения коленчатого вала выйдет из строя, вы не сможете завести свой автомобиль: после доскональной проверки системы зажигания и подачи топлива, в ходе которой не будет обнаружено существенных отклонений, рекомендуется обязательно проверить работоспособность датчика оборотов.

Заключение

«Плавающие» вращения двигателя не так редки: это состояние может возникнуть вследствие нескольких причин, поэтому необходимо тщательно проверить все варианты.

ДАТЧИКИ СИСТЕМЫ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ

Датчик температуры охлаждающей жидкости представляет собой термистор (резистор, сопротивление которого изменяется в зависимости от температуры). Датчик ввернут в отводящий штуцер термостата и соединен с входом контроллера. При низкой температуре сопротивление датчика высокое, а при высокой температуре - низкое (табл. 10.8).

ЭБУ рассчитывает температуру охлаждающей жидкости по падению напряжения на датчике. На холодном двигателе падение напряжения высокое, а на прогретом - низкое. Температура охлаждающей жидкости влияет на большинство характеристик, которыми управляет ЭБУ.

Для замены датчика вам потребуется ключ «на 19».

2. Частично слейте охлаждающую жидкость из радиатора.

3. Сожмите фиксатор колодки жгута проводов...

4. ...и отсоедините колодку от датчика температуры охлаждающей жидкости.

5. Ослабьте ключом затяжку датчика...

6. ...и выверните его из штуцера термостата.

7. Остудите датчик до температуры окружающего воздуха. Подсоедините тестер в режиме омметра к выводам датчика и измерьте его сопротивление. Измерьте термометром текущую температуру воздуха и сравните полученные значения с табл. 10.8. При отклонении сопротивления от нормы замените датчик.

8. Для измерения сопротивления на выводах датчика при различных температурных режимах опустите датчик в горячую воду и проверьте изменение его сопротивления по мере остывания воды, контролируя температуру воды термометром. Номинальные значения сопротивления при различной температуре указаны в табл. 10.8.

9. Установите датчик в порядке, обратном снятию.

10. Залейте охлаждающую жидкость.

Датчик детонации , прикрепленный к верхней части блока цилиндров, улавливает аномальные вибрации (детонационные удары) в двигателе.

Чувствительным элементом датчика является пьезокристаллическая пластинка. При возникновении детонации на выходе датчика генерируются импульсы напряжения, которые увеличиваются с возрастанием интенсивности детонационных ударов. ЭБУ по сигналу датчика регулирует опережение зажигания для устранения детонационных вспышек топлива.

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Нажмите на пружинный фиксатор и отсоедините колодку жгута проводов от колодки жгута датчика детонации.

3. Выверните болт крепления датчика детонации к блоку цилиндров двигателя...

4. ...и снимите датчик (впускной трубопровод для наглядности снят).

ПРИМЕЧАНИЕ

Обратите внимание на маркировку датчика, чтобы при замене на новый приобрести аналогичный датчик детонации.

5. Установите датчик в обратном порядке, ввернув болт его крепления моментом 19,5-20,5 Н·м.

Комбинированный датчик температуры и абсолютного давления воздуха во впускном трубопроводе. Датчик абсолютного давления выполнен в виде четырех резисторов переменного сопротивления, соединенных мостом и наклеенных на диафрагму, которая сжимается или растягивается в зависимости от абсолютного давления впускного воздуха внутри впускного трубопровода. Он фиксирует изменение давления во впускном трубопроводе в зависимости от изменения нагрузки и частоты вращения коленчатого вала двигателя и преобразует его в напряжение выходного сигнала. ЭБУ подает на датчик напряжение питания 5 В и обрабатывает его сигналы, передаваемые по цепи передачи сигнала. В зависимости от сигнала датчика ЭБУ изменяет продолжительность подачи топлива и угол опережения зажигания.

Датчик температуры впускного воздуха представляет собой термистор с отрицательным температурным коэффициентом: электрическое сопротивление датчика уменьшается с повышением температуры. По информации о температуре воздуха от датчика контроллер регулирует количество впрыскиваемого топлива.

Для замены датчика вам потребуется отвертка с крестообразным лезвием.

1. Отожмите пластмассовый фиксатор колодки жгута проводов...

2. ...и отсоедините колодку от датчика.

3. Выверните два винта крепления датчика температуры и абсолютного давления впускного воздуха к впускному трубопроводу...

4. ...и снимите датчик.

ПРИМЕЧАНИЕ

Обратите внимание на маркировку датчика, чтобы при замене неисправного датчика приобрести аналогичный датчик температуры и абсолютного давления впускного воздуха.

5. Установите датчик температуры и абсолютного давления впускного воздуха в порядке, обратном снятию.

Датчик скорости автомобиля установлен на коробке передач. Принцип действия датчика основан на эффекте Холла. Датчик выдает на ЭБУ прямоугольные импульсы напряжения с частотой, пропорциональной скорости вращения ведущих колес.

Для замены датчика вам потребуется ключ «на 10».

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Сожмите пружинный фиксатор колодки жгута проводов и отсоедините колодку от датчика скорости.

3. Выверните болт крепления и снимите датчик скорости.

4. Установите датчик скорости в порядке, обратном снятию.

Датчик положения дроссельной заслонки (ДПДЗ) установлен сбоку на дроссельном узле и связан с осью дроссельной заслонки.

Он представляет собой потенциометр, на один конец которого подается «плюс» напряжения питания (5 В), а другой его конец соединен с «массой». С третьего вывода потенциометра (от ползунка) идет выходной сигнал к ЭБУ. Когда дроссельная заслонка поворачивается (от воздействия на педаль управления), напряжение на выходе датчика изменяется.

При закрытой дроссельной заслонке оно ниже 0,95 В. Когда заслонка открывается, напряжение на выходе датчика растет и при полностью открытой заслонке должно быть более 4 В. Отслеживая выходное напряжение датчика,

ЭБУ корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т.е. по желанию водителя). ДПДЗ не требует регулировки, так как электронный блок воспринимает холостой ход (т.е. полное закрытие дроссельной заслонки) как нулевую отметку.

При отказе датчика дроссельной заслонки ЭБУ заносит в память код неисправности датчика, включает контрольную лампу системы управления двигателем и рассчитывает предполагаемое значение угла открытия дроссельной заслонки по частоте вращения коленчатого вала и по сигналам комбинированного датчика температуры и абсолютного давления воздуха во впускном трубопроводе.

Для замены ДПДЗ вам потребуется отвертка с крестообразным лезвием.

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Нажмите на фиксатор колодки жгута проводов...

3. ...и отсоедините колодку от датчика.

4. Выверните два винта крепления...

5. ...и снимите датчик положения дроссельной заслонки с дроссельного узла.

6. Установите датчик в порядке, обратном снятию.

Регулятор холостого хода (РХХ) регулирует частоту вращения коленчатого вала в режиме холостого хода, управляя количеством подаваемого воздуха в обход закрытой дроссельной заслонки. Он состоит из двухполюсного шагового электродвигателя и соединенного с ним конусного клапана. Клапан выдвигается или убирается по сигналам ЭБУ. Полностью выдвинутая игла регулятора (что соответствует 0 шагов) перекрывает поток воздуха. Когда игла вдвигается, обеспечивается расход воздуха, пропорциональный количеству шагов отхода иглы от седла.

Замена РХХ описана в разд. 5 «Двигатель» (см. «Проверка и замена регулятора холостого хода» ).

Датчик положения коленчатого вала индуктивного типа предназначен для синхронизации работы электронного блока управления с ВМТ поршней 1-го и 4-го цилиндров и угловым положением коленчатого вала.

Датчик установлен на картере сцепления напротив задающего зубчатого венца маховика. На маховике вырезаны зубья с равноудаленными впадинами. Два зуба срезаны для создания импульса синхронизации («опорного» импульса), который необходим для согласования работы блока управления с ВМТ поршней в 1-м и 4-м цилиндрах.

При вращении коленчатого вала зубья изменяют магнитное поле датчика, наводя импульсы напряжения переменного тока. Блок управления по сигналам датчика определяет частоту вращения коленчатого вала и выдает импульсы на форсунки.

При отказе датчика пуск двигателя невозможен.

Для замены датчика вам потребуется ключ «на 10».

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Нажмите на пружинный фиксатор...

3. ...и отсоедините колодку жгута проводов системы управления двигателем от колодки жгута проводов датчика.

4. Выверните болт крепления датчика...

5. ...выньте колодку жгута проводов датчика из кронштейна...

6. ...и извлеките датчик положения коленчатого вала из отверстия в картере сцепления.

7. Установите датчик в порядке, обратном снятию.

Датчик концентрации кислорода установлен в приемной трубе системы выпуска отработавших газов. Содержащийся в отработавших газах кислород реагирует с датчиком концентрации кислорода, создавая разность потенциалов на выходе датчика. Она изменяется приблизительно от 0,1 В (высокое содержание кислорода - бедная смесь) до 0,9 В (мало кислорода - богатая смесь).

Для нормальной работы температура датчика должна составлять не ниже 300°С. Поэтому для быстрого прогрева после пуска двигателя в датчик встроен нагревательный элемент.

Отслеживая выходное напряжение датчика концентрации кислорода, контроллер определяет, какую команду по корректировке состава рабочей смеси подавать на форсунки.

Если смесь бедная (низкая разность потенциалов на выходе датчика), то контроллер дает команду на обогащение смеси; если смесь богатая (высокая разность потенциалов) - на обеднение смеси.

Для замены управляющего датчика концентрации кислорода вам потребуются: ключ «на 22», отвертка с плоским лезвием.

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Выдвиньте красный фиксатор...

3....и разъедините колодки жгутов проводов системы управления двигателем и датчика концентрации кислорода.

4. Выверните датчик из приемной трубы и снимите его с автомобиля.

ПРИМЕЧАНИЕ

Обратите внимание на маркировку датчика, чтобы при замене на новый приобрести аналогичный датчик концентрации кислорода.

5. Установите датчик в порядке, обратном снятию, смазав предварительно резьбовую часть датчика графитной смазкой.

Датчик фаз установлен в задней части головки блока цилиндров. Принцип его действия основан на эффекте Холла. Датчик определяет ВМТ такта сжатия поршня 1-го цилиндра. Сигнал датчика используется контроллером для организации фазированного впрыска топлива в соответствии с порядком работы цилиндров.

При возникновении неисправности цепи контроллер заносит в свою память ее код и включает контрольную лампу.

Для замены датчика фаз вам потребуется ключ «на 8».

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Нажмите на пружинный фиксатор колодки жгута проводов...

3. ...и отсоедините колодку от разъема датчика.

4. Выверните два болта крепления крышки датчика к его корпусу...

5. ...и снимите крышку с установленными в ней чувствительным элементом и разъемом.

ПРИМЕЧАНИЕ

Чувствительный элемент датчика фазы приклепан к крышке заклепками, поэтому рекомендуем заменять его в сборе с крышкой.

6. Установите датчик фаз в порядке, обратном снятию.

Для синхронизации работы систем зажигания и впрыска предусмотрен датчик оборотов двигателя или, как он еще называется, датчик частоты вращения коленвала. Он передает в электронный блок управления мотором данные о том, на каких оборотах функционирует коленчатый вал в текущий момент времени.

Назначение

Датчик оборотов силового агрегата является очень важным элементом, без которого трудно представить взаимодействие всех систем, обеспечивающих исправное функционирование автомобиля.

ЭБУ использует сигналы, поступающие от этого датчика, для того, чтобы установить:

  • количество впрыскиваемого топлива;
  • момент впрыска топлива;
  • момент зажигания (характерно для двигателей бензинового типа);
  • время активации клапана адсорбера;
  • угол поворота распредвала в процессе работы так называемой системы изменения фаз газораспределительного механизма.

Расположение

Требуется знать, где находится датчик оборотов двигателя или, что одно и то же, индукционный датчик, чтобы проверить его работоспособность. Он находится над маркерным диском, который в свою очередь может располагаться:

  • на маховике;
  • внутри блока цилиндров на коленчатом валу (Форд, Опель и другие);
  • на коленчатом валу в передней части моторного отсека, совместно со шкивом привода дополнительных агрегатов (Ягуар, БМВ, ВАЗ и другие).

Лучше, если маркерные зубья маховика предназначены только для использования датчиком оборотов мотора. Несколько хуже, когда в качестве маркерных выступают стартерные зубья. Такая конструктивная особенность характерна для автомобилей марки Вольво и Ауди.

Искривление зуба маховика или даже малейший скол на нем зачастую становится причиной сбоев в системе зажигания, в связи с чем силовой агрегат отказывается работать на повышенных оборотах. Происходит хаотичное искрообразование, потому что блок управления двигателем ошибочно определяет количество зубьев.

В устройстве многих автомобилей в качестве датчика оборотов выступает датчик Холла. Этот элемент одновременно передает в ЭБУ сигналы о фазах газораспределительного механизма и обороты двигателя. В этом случае найти его можно в непосредственной близости от распределительного вала.

Если датчик частоты вращения коленвала вышел из строя, то ваш автомобиль не сможет завестись. Проверив подачу бензина и систему зажигания и не обнаружив никаких отклонений, не забудьте проверить датчик оборотов двигателя.

Видео

Подробнее об устройстве, конструкции и принципе работы датчика коленвала:

По предметам школьной программы набирают все большую популярность среди учащихся. В последнее время именно доступность интернета и мобильных гаджетов привела к резкому скачку числа участников таких мероприятий.
Но, если раньше участниками олимпиад по школьным предметам были в основном только отличники и успевающие ученики, то сейчас участником всероссийской олимпиады может стать совершенно любой школьник.

Портал всероссийских дистанционных олимпиад «Отличник» на своей странице в сети выложил отчет о результатах своих дистанционных олимпиад за последние годы. Из этого отчета видно, какие школьные предметы можно считать сводными для освоения и в каких заданиях участники чаще всего делают ошибки.

Самыми сложными, по мнению организаторов олимпиад и конкурсов «Отличник», являются предметы физика и химия. Олимпиада по химии включает в себя множество разных заданий из разделов неорганической и органической химии, и все они имеют примерно одинаковый процент ошибок участников. И совсем другая картина видна с заданиями по физике. О них и пойдет речь в данной статье.

27.06.2019

Среди общепромышленных, употребляемых для учета продукции и сырья, распространены товарные, автомобильные, вагонные, вагонеточные и др. Технологические служат для взвешивания продукции в ходе производства при технологически непрерывных и периодических процессах. Лабораторные применяют для определения влажности материалов и полуфабрикатов, проведения физикохимического анализа сырья и других целей. Различают технические, образцовые, аналитические и микроаналитнческие .

Можно разделить на ряд типов в зависимости от физических явлений, на которых основан принцип их действия. Наиболее распространены приборы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической и индукционной систем.

Схема прибора магнитоэлектрической системы показана на рис. 1.

Неподвижная часть состоит из магнита 6 и магнитопровода 4 с полюсными наконечниками 11 и 15, между которыми установлен строго центрированный стальной цилиндр 13. В зазоре между цилиндром и полюсными наконечниками, где сосредоточено равномерное радиально направленное , размещается рамка 12 из тонкой изолированной медной проволоки.

Рамка укреплена на двух осях с кернами 10 и 14, упирающихся в подпятники 1 и 8. Противодействующие пружины 9 и 17 служат токоподводами, соединяющими обмотку рамки с электрической схемой и входными зажимами прибора. На оси 4 укреплена стрелка 3 с балансными грузиками 16 и противодействующая пружина 17, соединенная с рычажком корректора 2.

01.04.2019

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Соединение кабелей — технологический процесс получения электрического соединения двух отрезков кабеля с восстановлением в месте соединения всех защитных и изоляционных оболочек кабеля и экранных оплеток.

Перед соединением кабелей измеряют сопротивление изоляции . У неэкранированных кабелей для удобства измерений один вывод мегаомметра поочередно подключают к каждой жиле, а второй — к соединённым между собой остальным жилам. Сопротивление изоляции каждой экранированной жилы измеряют при подключении выводов

МЕТОДИЧЕСКОЕ ПОСОБИЕ К ПРАКТИЧЕСКОЙ РАБОТЕ: «ЭКСПЛУАТАЦИЯ СИСТЕМ ОХЛАЖДЕНИЯ СЭУ»

ПО ДИСЦИПЛИНЕ: «ЭКСПЛУАТАЦИЯ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И БЕЗОПАСНОЕ НЕСЕНИЕ ВАХТЫ В МАШИННОМ ОТДЕЛЕНИИ »

ЭКСПЛУАТАЦИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ

Назначение системы охлаждения:

  • отвод теплоты от ГД;
  • отвод теплоты от вспомогательного оборудования;
  • подвод теплоты к ОУ и другому оборудованию (ГД перед пуском, ВДГ поддержание в "горячем" резерве и т.д.);
  • прием и фильтрация забортной воды;
  • продувание кингстонных ящиков летом от забивания медузами, водорослями, грязью, зимой - ото льда;
  • обеспечение работы ледовых ящиков и др.
Структурно система охлаждения подразделяется на пресной воды и систему охлаждения заборной воды. Системы охлаждения АДГ выполняются автономно.

Рис. 1. Система охлаждения дизелей


1 - охладитель топлива; 2 - маслоохладитель турбонагнетателей; 3 - расширительная цистерна ГД; 4 - водоохладитель ГД; 5 - маслоохладитель ГД; 6 - кингстонный ящик; 7 - фильтры забортной воды; 8 - кингстонный ящик; 9 - приемные фильтры ВДГ; 10 - насосы забортной воды ВДГ; 11 - насос пресной воды ГД; 12 - основной и резервный насосы забортной воды ГД; 13 - маслоохладитель ВДГ; 14 - водоохладитель ВДГ; 15 - ВДГ; 16 - расширительная цистерна ВДГ; 17 - опорный подшипник валопровода; 18 - главный упорный подшипник; 19 - главный двигатель; 20 - охладитель наддувочного воздуха; 21 - вода на охлаждение компрессоров; 22 - заполнение и пополнение системы пресной воды; 23 - подключение системы прогрева ДВС; 1оп - пресная вода; 1оз - забортная вода.

Министерство образования Республики Беларусь

Учреждение образования

Белорусский государственный университет информатики и радиоэлектроники

Кафедра микро- и наноэлектроники

Отчет по лабораторной работе №2

«Датчики скорости вращения»

По дисциплине «Микроэлектронные датчики и сенсорные устройства»

Проверил: Выполнил:

доц. Родионов Ю. А.

Цель работы:

1.Изучение теоретических материалов по теме “Датчики скорости вращения”:

1.1) основные определения датчиков скорости вращения;

1.2) классификация датчиков скорости вращения;

1.3) основные конструктивно-технологические решения исполнения датчиков.

2. Изучение теоретических материалов по теме “Микроэлектронный магниторезистивный датчик скорости вращения”:

2.1) магниторезистивный эффект в датчиках;

2.2) материалы и вопросы технологии;

2.3) интегральная схема формирования сигнала датчика;

2.4) размещение датчика при измерении скорости вращения.

3. Изучение графических материалов по теме “Датчики скорости вращения”:

3.1) температурные зависимости;

3.2) расположение датчика;

3.3) другие зависимости.

1. Датчики скорости вращения

1.1. Основные определения датчиков скорости вращения

Датчики скорости вращения представляют собой, так называемые, частотные датчики. Их принцип действия состоит в преобразовании скорости вращения (углового перемещения) в частоту изменений потока энергии (электрического тока или напряжения). Скорость вращения в технике представляет собой число оборотов в единицу времени и носит название частоты вращения (измеряется в Гц).

Выходной сигнал датчика скорости вращения может быть представлен в виде синусоидального изменения величины (напряжения) или в виде последовательности коротких импульсов. Для использования в цифровых системах контроля последний вид сигнала более предподчителен.

Методы измерения угловых скоростей вращения:

1. абсолютный метод; основан на определении числа оборотов вала и измерении соответствующего промежутка времени;

2. метод сравнения числа оборотов; основан на сравнении при помощи измерительных средств числа оборотов испытываемого вала с известной частотой какого-либо независимого периодического процесса.

Прибор для измерения угловых скоростей в технике называется тахометром . Обычно при помощи тахометров измеряют среднюю скорость вращения, постоянную в заданном промежутке времени.

Тахометры представляют собой современные модули автоматики и могут применяться в системах управления автоматическими линиями, станками и т.д.

Принцип работы тахометров. С помощью кнопок на лицевой панели задается установка количества импульсов датчика на оборот вала, которая высвечивается на индикаторе, и запоминается в энергонезависимой памяти. Ввод установки аналогичен вводу у счетчиков. На вход тахометра поступают импульсы с датчика (индуктивного/оптического или другого выключателя), контролирующего одну или несколько меток на валу. По частоте следования импульсов производится вычисление частоты вращения вала (обороты в минуту) и выдача значения на индикатор.

1.2. Классификация датчиков скорости вращения

По способу воспроизведения показаний : приборы с непосредственным отсчетом и самопишущие.

По принципу конструктивного выполнения : механические и электрические.

Механические тахометры : центробежные, часовые, дифференциальные, вибрационные, фрикционные, гидравлические, пневматические, суммирующие и др.

Современные электрические методы измерения скоростей вращения можно разделить на две основные группы:

1. приборы, измеряющие напряжение датчика, пропорциональное измеряемым скоростям, U=f(n);

2. приборы измеряющие частоту переменного тока датчика, пропорциональную измеряемой угловой скорости вращения, F=f(n).

1.3. Конструктивно-технологические решения исполнения датчиков

1. Индукционные датчики скорости вращения преобразуют измеряемую неэлектрическую величину в ЭДС индукции.

Принцип действия основан на использовании закона электромагнитной индукции.

Согласно закону Фарадея, индуцированное напряжение или электродвижущая сила (э.д.с.) в контуре численно равна и противоположна по знаку скорости изменения магнитного потока, сквозь поверхность ограниченную этим контуром, т.е.

Следовательно, магнитный поток, пересекающий контур, описывается функцией вида:

φ (x) = φ 0 F(x),

где x – переменная углового положения.

Отсюда видно, что относительное перемещение между источником потока и контуром наводит в последнем э.д.с., амплитуда которой пропорциональна скорости перемещения, вследствие чего на выходе датчика формируется сигнал:

e = - φ0(F(x)/dx)·(dx/dt)

В качестве датчиков скорости вращения обычно применяют тахогенераторы, выполненные в виде небольших генераторов постоянного или переменного тока с независимым возбуждением от постоянного магнита.

Устройство тахогенератора постоянного тока . Статор (индуктор), представляющий собой ферромагнитный каркас, несущий 2 (2p в общем случае) полюса, направляющих поле магнитной индукции, образуемое током через катушки или постоянными магнитами. Ротор, представляющий собой многослойный цилиндр из листового железа, вращающийся между полюсами статора, его ось совпадает с осью статора. По его периферии параллельно оси в углублениях располагается n = 2k медных проводников, называемых активными. Активные проводники соединены с пассивными, расположенными вдоль диаметра ротора. Коллектор – это цилиндр с осью, что и у ротора, но имеющей меньший диаметр, несущий изолированные между собой пластинки, каждая из которых связана с активным проводником. Щётки, которые закрепляются на двух диаметрально противоположных клеммах коллектора, располагаются перпендикулярно направлению индукции, служат для снятия максимальной величины э.д.с.

Принцип действия тахогенератора постоянного тока заключается в следующем: 2k проводников соединяются так, чтобы образовать два одинаковых комплекта по k последовательно соединённых проводников. В каждом из них возникает э.д.с., пропорциональная угловой скорости ω. Эта э.д.с. поступает во внешнюю цепь через две щётки, расположенных на коллекторе. Если ротор связан со внешним контуром, то э.д.с. вызывает в нём ток I, проходящий через активные проводники по разные стороны от нейтральной линии. Если проводники составлены попарно и симметрично относительно нейтральной линии, они создают поперечную индукцию, перпендикулярную линии полюсов и пропорциональную I (реакция ротора). Реакция ротора вызывает искривление силовых линий поля и приводит к смещению нейтральной линии в направлении движения. Величина э.д.с. ускоренно убывает с ростом тока I.

Достоинства: знак выходного сигнала изменяется одновременно с изменением направления вращения.

Недостатки: вследствие реакции ротора, выходное напряжение не является линейной функцией скорости вращения.

Тахогенератор переменного тока отличается тем, что в нём отсутствует коллектор и щётки.

Устройство тахометрического асинхронного генератора. Ротор состоит из тонкого немагнитного цилиндра, вращающегося со скоростью ω. Статор состоит из магнитного листового железа и несёт две обмотки: а) возбуждающую обмотку, к которой прикладывается напряжение, б) измерительную обмотку, в которой наводится э.д.с.

Принцип действия. Э.д.с., наводимая в измерительной обмотке, формирует периодический сигнал, амплитуда которого пропорциональна скорости вращения ω.

Достоинства: увеличение срока службы, отсутствие флуктуаций выходного напряжения, малый момент инерции.

Недостатки: более сложная схема включения.

2. Фотоэлектрические датчики скорости вращения регистрируют изменение светового потока, связанное с изменением положения в пространстве каких-либо движущихся частей механизмов и машин.

В качестве датчика скорости вращения применяется фотоэлектрический датчик с прерывателем.

Устройство фотоэлектрического датчика с прерывателем: фотосопротивление, диск с калиброванными отверстиями, который насаживается на вал измеряемого объекта. Фотосопротивление подключается последовательно с сопротивлением к источнику постоянного напряжения.

Принцип действия: Освещенность рабочей поверхности фотосопротивления прерывается диском с отверстиями. Если фотосопротивление не освещено, по нему течет темновой ток I T . В случае освещенности фотосопротивления, по нему течет световой ток I C .

Так как проводимость фотосопротивления при облучении его световым потоком F растет, то его световое сопротивление R C становится меньше темнового сопротивления R Т.

При вращении диска освещенность фотосопротивления модулируется, и в его цепи течет пульсирующий ток. Таким образом, ток, проходящий через фотосопротивление, является функцией светового потока F. Частота пульсаций тока определяется числом отверстий в диске и его скоростью вращения:

где n- скорость вращения диска, об/мин;

S- число отверстий в диске.

Достоинства: универсальность, простота конструкции, широкий рабочий диапазон измеряемой синхронной частоты, малая нагрузка на вал испытываемого объекта, возможность простого промежуточного преобразования частоты обычных серийных датчиков.

3. Емкостные датчики скорости вращения используются для преобразования механических перемещений в изменение емкости.

Устройство: конденсатор переменной емкости C с воздушным диэлектриком, маломощный трансформатор, со вторичной обмотки которого снимается сигнал, напряжение которого пропорционально скорости вращения. Емкостные датчики питаются переменным напряжением (обычно повышенной частоты - до десятков мегагерц). В качестве измерительных схем обычно применяют мостовые схемы и схемы с использованием резонансных контуров. В последнем случае, как правило, используют зависимость частоты колебаний генератора от емкости резонансного контура, т.е. датчик имеет частотный выход.

Принцип действия датчиков этого типа основан на изменении зарядного тока конденсатора пропорционально скорости изменения его емкости.

Вращение вала может быть функционально связано с изменением диэлектрической проницаемости , площади обкладок или расстояния между обкладками .

Для двухобкладочного плоского конденсатора электрическая емкость определяется выражением:

где ε 0 - диэлектрическая постоянная; ε - относительная диэлектрическая проницаемость среды между обкладками; S - активная площадь обкладок; h - расстояние между обкладками конденсатора.

Для преобразования механических перемещений в изменение емкости используются зависимости C (S ) и C (h ).

Если емкость конденсатора изменяется пропорционально изменению площади его обкладок S с частотой , то

где m =  /.

Емкостное сопротивление конденсатора X C линейно зависит от расстояния между пластинами конденсатора:

X C = 1/C = /C

Достоинства : простота, высокая чувствительность и малая инерционность.

Недостатки: влияние внешних электрических полей, относительная сложность измерительных устройств.

4. Ультразвуковые датчики скорости вращения применяются для измерения скорости вращения деталей, установленных в труднодоступных местах или для измерения в агрессивных средах.

Устройство. Датчик состоит из генератора ультразвуковых колебаний, излучающей головки, вертушки, вращающейся в трубопроводе, принимающей головки и демодулятора.

Принцип действия основан на различном поглощении или отражении ультразвуковых колебаний разнородными средами. При вращении металлической вертушки за счет различной проводящей способности жидкости и металла несущая частота ультразвуковых колебаний модулируется частотой вращения вертушки. С приемной головки сигнал поступает на измерительную аппаратуру. После демодуляции сигнала получается напряжения с частотой, пропорциональной скорости вращения вертушки.

Достоинства: высокая точность измерения.

Недостатки: шум, вибрация, производимые при движении излучателя, а также низкое разрешение.

5. Магниторезистивные датчики скорости вращения преобразуют измеряемую неэлектрическую величину в изменение сопротивления ферромагнитных материалов.

Устройство. Датчик состоит из измерительной катушки, которая снабжается магнитным сердечником. Катушка помещена перед диском или перед вращающимся ферромагнитным телом.

Принцип действия основан на магниторезистивном эффекте. Этот эффект заключается в том, что некоторые ферромагнитные материалы изменяют свое электрическое сопротивление при воздействии магнитного поля. Степень этого изменения зависит от величины напряженности магнитного поля и угла между вектором напряженности и направлением тока. На магнитный сердечник катушки воздействует поток индукции постоянного магнита. Последовательность скачков магнитных свойств диска или вращающегося тела вызывает периодическое изменение магнитного сопротивления в магнитной цепи катушки, которое наводит в ней э.д.с. с частотой, пропорциональной скорости вращения.

Магнит, установленный на оси вращения, при каждом обороте проходит один раз мимо магниторезистивного датчика, вызывая изменение его сопротивления (см. рис.1).

Рис.1. Схема реализации магниторезистивного датчика вращения.

Изменение сопротивления с помощью схемы, показанной на рис. 2, преобразуется в изменение напряжения U а. Зависимость выходного напряжения сигнала от времени показана на рис. 3.

Рис.2. Схема изменения сопротивления.

Рис.3. Зависимость выходного напряжения сигнала от времени.

Достоинства: простота устройства, надёжность, дешевизна.

Благодаря своим достоинствам микроэлектронные магниторезистивные датчики скорости вращения нашли широкое применение в автомобильной и бытовой технике.

Загрузка...
Top